[1] GHARI P M, SHAHBAZIAN R, GHORASHI S A. Wireless sensor network localization in harsh environments using SDP relaxation[J]. IEEE Communications Letters, 2016, 20(1):137-140. [2] KHAN M I, XIA K W. Effective Self adaptive multiple source localization technique by primal dual interior point method in binary sensor networks[J]. IEEE Communications Letters, 2017, 21(5):1119-1122. [3] RAJA A, SHANMUGAM V. Virtual source-based location privacy for wireless sensor networks[J]. IETE Journal of Research, 2015, 61(5):475-481. [4] YIN M S, TANG H W V. On the fit and forecasting performance of grey prediction models for China's labor formation[J]. Mathematical and Computer Modelling, 2013, 57(3/4):357-365. [5] 彭义刚,索津莉,戴琼海,等.从压缩传感到低秩矩阵恢复:理论与应用[J].自动化学报,2013,39(7):981-994.(PENG Y G, SUO J L, DAI Q H, et al. From compressed sensing to low rank matrix recovery:theory and applications[J]. Acta Automatica Sinica, 2013, 39(7):981-994.) [6] 冯绪,许小丰,梁璇,等.基于低秩矩阵恢复的移动WSN节点轨迹拟合研究[J].传感技术学报,2014,27(10):1401-1405.(FENG X, XU X F, LIANG X, et al. Research on path fitting of mobile nodes in mobile WSN based on low-rank matrix recovery[J]. Chinese Journal of Sensors and Actuators, 2014, 27(10):1401-1405.) [7] 鲁宁,夏克文,NELOFAR A,等.无线网络节点信号节能传输轨迹仿真[J].计算机仿真,2017,34(7):231-235.(LU N, XIA K W, NELOFAR A, et al. Trajectory simulation on wireless sensor networks node with signal energy conservation transmission [J]. Computer Simulation, 2017, 34(7): 231-235.) [8] LAI H J, PAN Y, LIU C, et al. Sparse learning-to-rank via an efficient primal-dual algorithm [J]. IEEE Transactions on Computers, 2013, 62(6): 1221-1233. [9] SONI A, JAIN S, HAUPT J, et al. Noisy matrix completion under sparse factor models [J]. IEEE Transactions on Information Theory, 2016, 62(6): 3636-3661. [10] CARPENTIER A, KIM A K H. An iterative hard thresholding estimator for low rank matrix recovery with explicit limiting distribution [J]. Statistics, 2015, 107(498): 800-813. [11] NIU W J, XIA K W, ZU B K, et al. Efficient multiple kernel learning algorithms using low-rank representation [J]. Computational Intelligence and Neuroscience, 2017, 2017: Article ID 3678487. [12] SHI J R, ZHENG X, YONG L Q. Incomplete robust principal component analysis [J]. ICIC Express Letters, Part B: Applications, 2014, 5(6): 1531-1538. [13] CANDÈS E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted l1 minimization [J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 877-905. [14] AFONSO M V, BIOUCAS-DIAS J M, FIGUEIREDO M A T. Fast image recovery using variable splitting and constrained optimization [J]. IEEE Transactions on Image Processing, 2010, 19(9): 2345-2356. [15] BRUCKSTEIN A M, DONOHO D L, ELAD M. From sparse solutions of systems of equations to sparse modeling of signals and images [J]. SIAM Review, 2009, 51(1): 34-81. [16] CAI J F, CANDÈS E J, SHEN Z W. A singular value thresholding algorithm for matrix completion [J]. SIAM Journal on Optimization, 2008, 20(4): 1956-1982. |