[1] LU Y, LI J. Algorithm of G2 blending NURBS surfaces based on adjustable parameters[J]. Journal of Computer Engineering and Applications, 2011, 47(5):168-170.(陆亚文,李际军. 一种参数化可调的NURBS曲面G2光滑拼接算法[J]. 计算机工程与应用, 2011, 47(15):168-170.) [2] HOFFMANN C, HOPCROFT J. Quadratic blending surfaces[J]. Computer Aided Design, 1986,18(1):301-306. [3] BOHUMIR B, BERT J, LAVICKA M, et al. Blends of canal surfaces from polyhedral medial transform representations [J]. Computer Aided Design, 2011, 43(11):1477-1484. [4] GUAN D, LI Z, CHANG Y, et al. Wire-frame method for blending surface design[J]. Proceedings of the National Science Council, Republic of China, Part A: Physical Science and Engineering, 1999, 23(1):20-30. [5] WANG D. Selected lectures in symbolic computation[M]. Beijing: Tsinghua University Press, 2003:182-192.(王东明. 符号计算选讲[M]. 北京:清华大学出版社. 2003: 182-192.) [6] FANG M, WANG G. Blending implicit algebraic surfaces by combining division with filling S-patches[J]. China Joural of Computers, 2012, 35(8): 1782-1790.(方美娥,汪国昭. 代数曲面混合的切分结合S曲面补洞方法[J]. 计算机学报, 2012, 35(8): 1782-1790.) [7] LI Y. Study to the theory and algorithm of blending of algebraic surfaces [M]. Beijing: Science Press, 2011: 20-40.(厉玉蓉. 代数曲面拼接的理论与算法研究[M]. 北京:科学出版社, 2011:20-40.) [8] WU T. GCk blending of two algebraic surfaces[J]. Journal of Jilin University:Science Edition, 2002, 40(1):36-39.(伍铁如. 两个代数曲面的GCk拼接[J]. 吉林大学学报:理学版,2002,40(1):36-39.) [9] CHENG J, GAO X. Constructing the blending surface for for two arbitrary surfaces[J]. Journal of Engineering Graphics, 2006, 27(1):39-44.(程进三,高小山. 构造两个曲面的拼接曲面[J]. 工程图学学报, 2006, 27(1):39-44.) [10] CHENG J. Blending quadric surfaces via base curve method[C]//Proceedings of ASCM 2003. Singapore: World Scientific, 2003:77-86. [11] LOU W. Grobner bases method of algebraic surface blending[D]. Hefei: University of Science and Technology of China, 2000.(娄文平. 代数曲面Blending的Grobner基方法[D]. 合肥: 中国科学技术大学. 2000.) [12] LI Y, XUAN Z, WU Z. Parameter adjustment to algebraic surface blending[J]. Journal of Computer-Aided Design and Computer Graphics, 2013, 25(3):350-355.(李耀辉,宣兆成,武志峰. 代数拼接曲面的参数调整[J]. 计算机辅助设计与图形学学报, 2013,25(3):350-355.) [13] LI Y, XUAN Z, WU Z, et al. Smoothening in surface blending of quadric algebraic surfaces[J]. Journal of Computer Applications,2014, 34(7): 2054-2057.(李耀辉,宣兆成,武志峰,等. 二次代数曲面拼接中的光顺处理[J]. 计算机应用, 2014, 34(7): 2054-2057.) [14] LI Y. Resultant-based method of algebraic surface blending[J]. Computer Engineering and Applications, 2008, 44(29):17-20.(李耀辉. 基于结式方法的代数曲面拼接[J]. 计算机工程与应用, 2008, 44(29):17-20.) [15] GALBRAITH C, MACMURCHY P, WYVILL B. BlobTree trees[C]//Proceedings of the 2004 Computer Graphics International. Piscataway: IEEE Press, 2004: 78-85. [16] ZHONG N, TANG Y, FANG B, et al. A Delaunay triangulation-like method for modeling multi-furcating blood vessel[J]. Journal of Computer-Aided Design and Computer Graphics, 2014, 26(6): 973-982.(钟南昌,唐远炎,房斌,等. 类Delaunay三角剖分的多分叉血管建模方法[J]. 计算机辅助设计与图形学学报, 2014, 26(6): 973-982.) [17] XU G, WANG G. Bézier approximation of PDE surface[J]. Journal of Software, 2007,18(11): 2914-2920.(徐岗,汪国昭. PDE 曲面的Bézier逼近[J]. 软件学报, 2007, 18(11): 2914-2920.) [18] WARREN J. Blending algebraic sufaces[J]. ACM Transactions on Graphics, 1989:263-278. [19] KIM K. Leonardo's formula explains why trees don't splinter[EB/OL]. [2014-10-10]. http://news.sciencemag.org/physics/2011/11/leonardos-formula-explains-why-trees-dont-splinter. |