[1] BIAN J G, YANG K, BOONE J M, et al. Investigation of iterative image reconstruction in low-dose breast CT[J]. Physics in Medicine and Biology, 2014, 59(11):2659-2685. [2] 王丽艳, 韦志辉. 低剂量CT的线性Bregman迭代重建算法[J]. 电子与信息学报, 2013, 35(10):2418-2424.(WANG L Y, WEI Z H. Linearized Bregman iterations for low-dose CT reconstruction[J]. Journal of Electronics and Information, 2013, 35(10):2418-2424.) [3] CHEN Y, GAO D Z, NIE C, et al. Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive weighting local nonprior[J]. Computerized Medical Imaging and Graphics, 2009, 33(7):495-500. [4] LI T, LI X, WANG J, et al. Nonlinear sinogram smoothing for low-dose X-ray CT[J]. IEEE Transactions on Nuclear Science, 2004, 51(5):2505-2513. [5] MA J H, ZHANG H, GAO Y, et al. Iterative image reconstruction for cerebral perfusion CT using a pre-contrast scan induced edge-preserving prior[J]. Physics in Medicine and Biology, 2012, 57(22):7519-7542. [6] 何玲君, 潘晋孝, 孔慧华. 自适应正则MAP的CT图像重建方法研究[J]. 计算机工程与应用, 2011, 47(28):198-200.(HE L J, PAN J X, KONG H H. Adaptive regularized MAP of CT image reconstruction method[J]. Computer Engineering and Applications, 2011, 47(28):198-200.) [7] 张芳, 崔学英, 张权, 等. 基于变指数各向异性扩散和非局部的最大似然期望最大低剂量CT重建算法[J]. 计算机应用, 2014, 34(1):3605-3608, 361.(ZHANG F, CUI X Y, ZHANG Q, et al. MLEM low-dose CT reconstruction algorithm based on variable exponent anisotropic diffusion and non-locality[J]. Journal of Computer Applications, 2014, 34(1):3605-3608, 361.) [8] 李晓红, 张权, 刘祎, 等. 基于小波收缩和正逆扩散结合的优质中值先验图像重建算法[J]. 计算机应用, 2012, 32(12):3357-3360.(LI X H, ZHANG Q, LIU Y, et al. High quality median prior image reconstruction algorithm based on wavelet shrinkage and forward-and-backward diffusion[J]. Journal of Computer Applications, 2012, 32(12):3357-3360.) [9] SHEN M F, SU Z F, CHEN T T, et al. An algorithm based on compound anisotropic diffusion for image denoising[J]. Applied Mechanics and Materials, 2014, 687-691:3927-3931. [10] BARBU T. Robust anisotropic diffusion scheme for image noise removal[J]. Procedia Computer Science, 2014, 35:522-530. [11] 颜建华. 正电子发射断层图像重建算法研究[D]. 武汉:华中科技大学, 2007:54-70.(YAN J H. Investigation of positron emission tomography image reconstruction[D]. Wuhan:Huazhong University of Science and Technology, 2007:54-70.) [12] 张芳, 张权, 崔学英, 等.基于小波和非局部的全变差中值先验重建算法[J]. 计算机工程与设计, 2015, 36(8):2152-2156.(ZHANG F, ZHANG Q, CUI X Y, et al. Total variation median prior reconstruction algorithm based on wavelet and nonlocal[J]. Computer Engineering and Design, 2015, 36(8):2152-2156.) [13] PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1990, 12(7):629-639. [14] CHEN R C, YU P T. Fuzzy selection filters for image restoration with neural learning[J]. IEEE Transactions on Signal Processing, 1999, 47(5):1446-1450. [15] SHIVANI S, GURSHARANJEET S K. An image denoising framework with multi-resolution bilateral filtering and normal shrink approach[J]. Research Journal of Applied Sciences, 2014, 6(7):1240-1246. [16] ANNA G R, MATTHIAS K, ROBERT W, et al. An FPGA-based fully synchronized design of a bilateral filter for real-time image denoising[J]. IEEE Transactions on Industrial Electronics, 2014, 8(61):4093-4104. [17] JOSEPH S P, JOSHIN J M, CHANDRASEKHAR K. MR image enhancement using an extended neighborhood filter[J]. Journal of Visual Communication and Image Representation, 2014, 25(7):1604-1615. [18] ALENIUS S, RUOTSALAINEN U. Bayesian image reconstruction for emission tomography based on median root prior[J]. European Journal of Nuclear Medicine, 1997, 24(3):258-265. [19] HSIAO I T, RANGARAJAN A, GINDI G. A new convex edge-preserving median prior with application to tomography[J]. IEEE Transactions on Medical Imaging, 2003, 22(5):580-585. [20] BUADES A, COLL B, MOREL J M. A review of image denoising algorithms, with a new one[J]. SIAM Journal on Multiscale Modeling & Simulation, 2005, 4(2):490-530. [21] ZHANG Q, LIU Y, SHU H Z, et al. Application of regularized maximum likelihood algorithm in PET image reconstruction combined with nonlocal fuzzy anisotropic diffusion[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(20):4561-4565. [22] CUI X Y, ZHANG Q, SHANGGUAN H, et al. The adaptive sinogram restoration algorithm based on anisotropic diffusion by energy minimization for low-dose X-ray CT[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(5):1694-1697. [23] JI D J, HU C H, YANG H. Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model[J]. Journal of X-ray Science and Technology, 2015, 3(23):311-320. [24] ZHANG Y, ZHANG J Y, LU H B. Statistical sinogram smoothing for low-dose CT with segmentation-based adaptive filtering[J]. IEEE Transactions on Nuclear Science, 2010, 5(57):2587-2598. |