Journal of Computer Applications ›› 2016, Vol. 36 ›› Issue (4): 1141-1145.DOI: 10.11772/j.issn.1001-9081.2016.04.1141

Previous Articles     Next Articles

Cloth simulation bending model based on mean curvature

LI Na, DING Hui   

  1. College of Information Engineering, Capital Normal University, Beijing 100048, China
  • Received:2015-07-29 Revised:2015-10-12 Online:2016-04-10 Published:2016-04-08

基于平均曲率的布料模拟弯曲模型

李娜, 丁辉   

  1. 首都师范大学 信息工程学院, 北京 100048
  • 通讯作者: 丁辉
  • 作者简介:李娜(1990-),女,内蒙古乌兰察布人,硕士研究生,主要研究方向:基于物理的虚拟现实; 丁辉(1977-),女,黑龙江双鸭山人,副教授,博士,CCF会员,主要研究方向:计算机视觉、数字图像处理。

Abstract: In view of the bending properties of cloth, an approximate model of nonlinear bending was proposed based on the analysis of the fabric characteristics and internal structure of cloth. Firstly, the parameters of bending properties were obtained through the measurement of bending properties of real cloth. Then, the bending model based on mean curvature was put forward to calculate the bending force. Secondly, the surface mean curvature and Gauss curvature were used to segment the triangular mesh model of cloth in the dynamic simulation. Finally, the bending force was updated according to the change of the mean curvature. In the comparison experiments with the Volino's bending model, the key frame speed of the proposed model increased by an average of 2.7% in the process of bending and 4.1% in the process of lifting arms without affecting the quality of cloth simulation. The experimental results show that the proposed model is simple and accurate, and it can fully show the details of clothing folds in a natural way.

Key words: cloth simulation, bending model, mean curvature, surface segmentation, triangular mesh

摘要: 通过对布料特性及内部结构的研究与分析,针对布料的弯曲特性提出一种非线性弯曲近似模型。首先对实际布料的弯曲属性值进行测量,获得布料的弯曲属性参数;然后,在此基础上建立基于平均曲率的弯曲近似模型来表示弯曲力。其次,利用曲面的平均曲率与高斯曲率对布料的三角网格模型进行分区划分。最后,根据子区域平均曲率的变化对弯曲力进行更新。仿真实验中,在不影响布料模拟质量的前提下,与Volino弯曲模型相比在弯腰时关键帧的速度平均提高了2.7%,抬臂时关键帧的速度平均提高了4.1%。实验结果表明,该模型对弯曲力的计算兼顾了简单性和精确性,能充分表现衣服褶皱细节,生成的衣服褶皱较真实。

关键词: 布料模拟, 弯曲模型, 平均曲率, 曲面划分, 三角网格

CLC Number: