[1] MCDONALD R, HANNAN K, NEYLON T, et al. Structured models for fine-to-coarse sentiment analysis[C]//ACL 2007: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2007: 432-439. [2] PANG B, LEE L. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts[C]//ACL 2004: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2004: 271-278. [3] TÄCKSTRÖM O, MCDONALD R. Discovering fine-grained sentiment with latent variable structured prediction models[C]//ECIR 2011: Proceedings of the 33rd European Conference on Information Retrieval. Berlin: Springer, 2011: 368-374. [4] TÄCKSTRÖM O, MCDONALD R. Semi-supervised latent variable models for sentence-level sentiment analysis[C]//ACL 2011: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2011: 569-574. [5] ZHOU G, ZHAO J, ZENG D. Sentiment classification with graph co-regularization[C]//COLING 2014: Proceedings of the 25th International Conference on Computational Linguistics. Stroudsburg: ACL, 2014: 1331-1340. [6] DING X, LIU B, ZHANG L. Entity discovery and assignment for opinion mining applications[C]//KDD 2009: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 1125-1134. [7] ZHAO W X, JIANG J, YAN H, et al. Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid[C]//EMNLP 2010: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2010: 56-65. [8] WILSON T, WIEBE J, HOFFMANN P. Recognizing contextual polarity in phrase-level sentiment analysis[C]//HLT'2005: Proceedings of the 2005 Conference on Human Language Technology and Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2005: 347-354. [9] BLEI D, NG A, JORDAN M. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(5): 993-1022. [10] GRUBER A, WEISS Y, ROSEN-ZVI M. Hidden topic Markov models[C]//AISTATS 2007: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics.[S.l.]: JMLR, 2007, 2:163-170. [11] MUKHERJEE A, LIU B. Modeling review comments[C]//ACL 2012: Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg: ACL, 2012: 320-329. [12] LIN C, HE Y. Joint sentiment/topic model for sentiment analysis[C]//CIKM 2009: Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM, 2009: 375-384. [13] MEI Q, LING X, WONDRA M, et al. Topic sentiment mixture: modeling facets and opinions in weblogs[C]//WWW 2007: Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 171-180. [14] ZHANG Y, JI D, SU Y, et al. Sentiment analysis for online reviews using an author-review-object model[C]//AIRS 2011: Proceedings of the Seventh Asia Information Retrieval Societies Conference. Berlin: Springer, 2011: 362-371. [15] BAGHERI A, SARAEE M, JONG F D. ADM-LDA: An aspect detection model based on topic modelling using the structure of review sentences[J]. Journal of Information Science, 2014, 40(5): 621-636. [16] JO Y, OH A H. Aspect and sentiment unification model for online review analysis[C]//WSDM 2011: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. New York: ACM, 2011: 815-824. [17] NGUYEN T H, SHIRAI K. Topic modeling based sentiment analysis on social media for stock market prediction[C]//ACL-IJCNLP 2015: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 1354-1364 [18] BANERJEE A, SHAN H. Latent Dirichlet conditional Naive-Bayes models[C]//ICDM2007: Proceedings of the 2007 IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2007: 421-426. [19] GRIFFITHD T L, STEYVERS M. Finding scientific topics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(Supp1): 5228-5235. [20] DASGUPTA S, NG V. Topic-wise, sentiment-wise, or otherwise? Identifying the hidden dimension for unsupervised text classification[C]//EMNLP 2009: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2009, 2: 580-589 [21] LI T, ZHANG Y, SINDHWANI V. A non-negative matrix tri-factorization approach to sentiment classification with lexical prior knowledge[C]//ACL-IJCNLP 2009: Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP. Stroudsburg: ACL, 2009: 244-252. [22] WU Y, ESTER M. FLAME: a probabilistic model combining aspect based opinion mining and collaborative filtering[C]//WSDM 2015: Proceedings of the 8th ACM International Conference on Web Search and Data Mining. New York: ACM, 2015: 199-208. [23] TANG D, QIN B, LIU T, et al. User modeling with neural network for review rating prediction[C]//IJCAI'15: Proceedings of the 24th International Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2015: 1340-1346. [24] 蔡国永,夏彬彬.基于卷积神经网络的图文融合媒体情感预测[J].计算机应用,2016,36(2):428-431. (CAI G Y, XIA B B. Multimedia sentiment analysis based on convolutional neural network[J]. Journal of Computer Applications, 2016, 36(2): 428-431.) [25] 徐学可,谭松波,刘悦,等.面向在线顾客点评的属性依赖情感知识学习[J].中文信息学报,2015,29(3):121-129. (XU X K, TAN S B, LIU Y, et al. Learning aspect-dependent sentiment knowledge for online customer reviews[J]. Journal of Chinese Information Processing, 2015, 29(3): 121-129.) |