Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (2): 430-436.DOI: 10.11772/j.issn.1001-9081.2021122127
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Lei ZHONG1, Yunsheng ZHOU1, Dunhui YU1,2, Haibo CUI1,2()
Received:
2021-12-27
Revised:
2022-03-18
Accepted:
2022-06-20
Online:
2022-08-03
Published:
2023-02-10
Contact:
Haibo CUI
About author:
ZHONG Lei, born in 2001. His research interests include natural language processing, knowledge graph.Supported by:
通讯作者:
崔海波
作者简介:
钟磊(2001—),男,湖北孝感人,主要研究方向:自然语言处理、知识图谱基金资助:
CLC Number:
Lei ZHONG, Yunsheng ZHOU, Dunhui YU, Haibo CUI. Reviewer recommendation algorithm based on affinity and research direction coverage[J]. Journal of Computer Applications, 2023, 43(2): 430-436.
钟磊, 周允升, 余敦辉, 崔海波. 基于亲和力与研究方向覆盖率的审稿人推荐算法[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 430-436.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021122127
名称 | 审稿人数 | 待审论文数 | 研究方向数 |
---|---|---|---|
S2ORC | 2 483 | 2 446 | 368 |
SIGIR | 189 | 73 | 25 |
Tab. 1 Dataset information
名称 | 审稿人数 | 待审论文数 | 研究方向数 |
---|---|---|---|
S2ORC | 2 483 | 2 446 | 368 |
SIGIR | 189 | 73 | 25 |
参数 | 取值范围 |
---|---|
主题数 | 10,20,30,40,50,60,70,80,90,100,110 |
审稿小组 影响因子 | 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 |
融合权重 因子 | 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 |
冷门研究 方向因子 | 0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10 |
Tab. 2 Experimental data parameters
参数 | 取值范围 |
---|---|
主题数 | 10,20,30,40,50,60,70,80,90,100,110 |
审稿小组 影响因子 | 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 |
融合权重 因子 | 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 |
冷门研究 方向因子 | 0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10 |
数据集 | 算法 | Avg.Coverage | Avg.TPMS | COI |
---|---|---|---|---|
S2ORC | PLSARAM | 0.885 165 | 0.664 379 | 401 |
TPMS | 0.480 448 | 0.949 123 | 1 552 | |
PR4A | 0.479 243 | 0.948 118 | 1 533 | |
FairIR | 0.480 369 | 0.949 123 | 1 553 | |
FairFlow | 0.480 305 | 0.949 123 | 1 553 | |
GRRR | 0.474 757 | 0.943 126 | 1 483 | |
ARDC | 0.859 039 | 0.855 293 | 0 | |
SIGIR | PLSARAM | 0.774 139 | 0.646 868 | 2 |
TPMS | 0.076 245 | 0.945 196 | 7 | |
PR4A | 0.076 245 | 0.945 196 | 7 | |
FairIR | 0.076 245 | 0.945 196 | 7 | |
FairFlow | 0.067 687 | 0.933 191 | 6 | |
GRRR | 0.076 245 | 0.945 196 | 7 | |
ARDC | 0.721 368 | 0.766 605 | 0 |
Tab. 3 Comparison of experimental results of different algorithms
数据集 | 算法 | Avg.Coverage | Avg.TPMS | COI |
---|---|---|---|---|
S2ORC | PLSARAM | 0.885 165 | 0.664 379 | 401 |
TPMS | 0.480 448 | 0.949 123 | 1 552 | |
PR4A | 0.479 243 | 0.948 118 | 1 533 | |
FairIR | 0.480 369 | 0.949 123 | 1 553 | |
FairFlow | 0.480 305 | 0.949 123 | 1 553 | |
GRRR | 0.474 757 | 0.943 126 | 1 483 | |
ARDC | 0.859 039 | 0.855 293 | 0 | |
SIGIR | PLSARAM | 0.774 139 | 0.646 868 | 2 |
TPMS | 0.076 245 | 0.945 196 | 7 | |
PR4A | 0.076 245 | 0.945 196 | 7 | |
FairIR | 0.076 245 | 0.945 196 | 7 | |
FairFlow | 0.067 687 | 0.933 191 | 6 | |
GRRR | 0.076 245 | 0.945 196 | 7 | |
ARDC | 0.721 368 | 0.766 605 | 0 |
1 | TENNANT J P, ROSS-HELLAUER T. The limitations to our understanding of peer review[J]. Research Integrity and Peer Review, 2020, 5: No.6. 10.1186/s41073-020-00092-1 |
2 | JECMEN S, ZHANG H R, LIU R, et al. Mitigating manipulation in peer review via randomized reviewer assignments[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 12533-12545. |
3 | YEŞILÇIMEN A, YILDIRIM E A. An alternative polynomial-sized formulation and an optimization based heuristic for the reviewer assignment problem[J]. European Journal of Operational Research, 2019, 276(2): 436-450. 10.1016/j.ejor.2019.01.035 |
4 | HOANG D T, NGUYEN N T, COLLINS B, et al. Decision support system for solving reviewer assignment problem[J]. Cybernetics and Systems, 2021, 52(5): 379-397. 10.1080/01969722.2020.1871227 |
5 | TAN S C, DUAN Z, ZHAO S, et al. Improved reviewer assignment based on both word and semantic features[J]. Information Retrieval Journal, 2021, 24(3): 175-204. 10.1007/s10791-021-09390-8 |
6 | MIMNO D, McCALLUM A. Expertise modeling for matching papers with reviewers[C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2007: 500-509. 10.1145/1281192.1281247 |
7 | KARIMZADEHGAN M, ZHAI C X, BELFORD G. Multi-aspect expertise matching for review assignment[C]// Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York: ACM, 2008: 1113-1122. 10.1145/1458082.1458230 |
8 | 吉余岗,李依桐,石川. 融合异质网络与主题模型的方面分预测[J]. 计算机应用, 2017, 37(11):3201-3206. 10.11772/j.issn.1001-9081.2017.11.3201 |
JI Y G, LI Y T, SHI C. Aspect rating prediction based on heterogeneous network and topic model[J]. Journal of Computer Applications, 2017, 37(11): 3201-3206. 10.11772/j.issn.1001-9081.2017.11.3201 | |
9 | NAGARAJAN G, MINU R I, JAYANTHILA DEVI A. Optimal nonparametric Bayesian model-based multimodal BoVW creation using multilayer pLSA[J]. Circuits, Systems, and Signal Processing, 2020, 39(2): 1123-1132. 10.1007/s00034-019-01307-7 |
10 | CHARLIN L, ZEMEL R S. The Toronto paper matching system: an automated paper-reviewer assignment system[C/OL]// Proceedings of the International Conference on Machine Learning 2013 Workshop on Peer Reviewing and Publishing Models. [2021-10-23].. |
11 | O’DELL R, WATTENHOFER M, WATTENHOFER R. The paper assignment problem[R/OL]. [2021-10-23].. |
12 | KOBREN A, SAHA B, McCALLUM A. Paper matching with local fairness constraints[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1247-1257. 10.1145/3292500.3330899 |
13 | STELMAKH I, SHAH N B, SINGH A. PeerReview4All: fair and accurate reviewer assignment in peer review[C]// Proceedings of the 30th International Conference on Algorithmic Learning Theory. New York: JMLR.org, 2019: 828-856. |
14 | PAYAN J, ZICK Y. I will have order! optimizing orders for fair reviewer assignment[C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. California: ijcai.org, 2022: 440-446. 10.24963/ijcai.2022/63 |
15 | KOU N M, U L H, MAMOULIS N, et al. Weighted coverage based reviewer assignment[C]// Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2015: 2031-2046. 10.1145/2723372.2723727 |
16 | WU R H, GUO C, WU F, et al. Making paper reviewing robust to bid manipulation attacks[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 11245-11250. |
17 | 陈琪,张莉,蒋竞,等. 一种基于支持向量机和主题模型的评论分析方法[J]. 软件学报, 2019, 30(5):1547-1560. |
CHEN Q, ZHANG L, JIANG J, et al. Review analysis method based on support vector machine and latent dirichlet allocation[J]. Journal of Software, 2019, 30(5): 1547-1560. | |
18 | 田保军,刘爽,房建东. 融合主题信息和卷积神经网络的混合推荐算法[J]. 计算机应用, 2020, 40(7):1901-1907. 10.11772/j.issn.1001-9081.2019122067 |
TIAN B J, LIU S, FANG J D. Hybrid recommendation algorithm by fusion of topic information and convolution neural network[J]. Journal of Computer Applications, 2020, 40(7): 1901-1907. 10.11772/j.issn.1001-9081.2019122067 | |
19 | LONG C, WONG R C W, PENG Y, et al. On good and fair paper-reviewer assignment[C]// Proceedings of the IEEE 13th International Conference on Data Mining. Piscataway: IEEE, 2013: 1145-1150. 10.1109/icdm.2013.13 |
[1] | Xuemin XU, Xiuguo ZHANG, Yuanyuan XIAO, Zhiying CAO. Large-scale Web service composition based on optimized grey wolf optimizer [J]. Journal of Computer Applications, 2022, 42(10): 3162-3169. |
[2] | YANG Fengrui, HUO Na, ZHANG Xuhong, WEI Wei. Topic-expanded emotional conversation generation based on attention mechanism [J]. Journal of Computer Applications, 2021, 41(4): 1078-1083. |
[3] | YANG Weiya, YU Zhengtao, GAO Shengxiang, SONG Ran. Chinese-Vietnamese news topic discovery method based on cross-language neural topic model [J]. Journal of Computer Applications, 2021, 41(10): 2879-2884. |
[4] | ZHU Simiao, Wei Shiwei, WEI Siheng, YU Dunhui. Video recommendation algorithm based on danmaku sentiment analysis and topic model [J]. Journal of Computer Applications, 2021, 41(10): 2813-2819. |
[5] | YIN Chunyong, ZHANG Sun. End-to-end adversarial variational Bayes method for short text sentiment classification [J]. Journal of Computer Applications, 2020, 40(9): 2536-2542. |
[6] | TIAN Baojun, LIU Shuang, FANG Jiandong. Hybrid recommendation algorithm by fusion of topic information and convolution neural network [J]. Journal of Computer Applications, 2020, 40(7): 1901-1907. |
[7] | Shuman WANG, Aiping LI, Liguo DUAN, Jia FU, Yongle CHEN. Service discovery method for Internet of Things based on Biterm topic model [J]. Journal of Computer Applications, 2020, 40(2): 459-464. |
[8] | YANG Fei, LUO Jianqiao, LI Bailin. Railway fastener classification model based on sLDA combined with global and local constraints [J]. Journal of Computer Applications, 2019, 39(3): 888-893. |
[9] | XU Hongyan, WANG Dan, WANG Fuhai, WANG Rongbing. User relevance measure method combining latent Dirichlet allocation and meta-path analysis [J]. Journal of Computer Applications, 2019, 39(11): 3288-3292. |
[10] | YU Hui, FENG Xupeng, LIU Lijun, HUANG Qingsong. Identification method of user's medical intention in chatting robot [J]. Journal of Computer Applications, 2018, 38(8): 2170-2174. |
[11] | LIU Zhanghu, CHENG Chunling. Variance reduced stochastic variational inference algorithm for topic modeling of large-scale data [J]. Journal of Computer Applications, 2018, 38(6): 1675-1681. |
[12] | XU Yinjie, SUN Chunhua, LIU Yezheng. Joint sentiment/topic model integrating user characteristics [J]. Journal of Computer Applications, 2018, 38(5): 1261-1266. |
[13] | LI Yan, LIU Jiayong. User location prediction model based on author topic model and radiation model [J]. Journal of Computer Applications, 2018, 38(4): 939-944. |
[14] | XU Liyang, HUANG Ruizhang, CHEN Yanping, QIAN Zhisen, LI Wanying. Multi-source text topic mining model based on Dirichlet multinomial allocation model [J]. Journal of Computer Applications, 2018, 38(11): 3094-3099. |
[15] | DENG Yang, ZHANG Chenxi, LI Jiangfeng. Video shot recommendation model based on emotion analysis using time-sync comments [J]. Journal of Computer Applications, 2017, 37(4): 1065-1070. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||