[1] FONG S,DEB S,YANG X-S,et al.Towards enhancement of performance of K-means clustering using nature-inspired optimization algorithms[J].The Scientific World Journal,2014,2014:564829. [2] YANG X-S,DEB S.Cuckoo search via Lévy flights[C]//NaBIC 2009:Proceedings of the 2009 World Congress on Nature&Biologically Inspired Computing.Piscataway,NJ:2009:210-214. [3] FISTER I,Jr.,YANG X-S,FISTER D,et al.Cuckoo search:a brief literature review[M]//Cuckoo Search and Firefly Algorithm,Volume 516 of the Series Studies in Computational Intelligence.Berlin:Springer-Verlag,2013:49-62. [4] YANG X-S,DEB S.Cuckoo search:recent advances and applications[J].Neural Computing and Applications,2014,24(1):169-174. [5] SRIVASTAVA P R,KHANDELWAL R,KHANDELWAL S,et al.Automated test data generation using cuckoo search and tabu search (CSTS) algorithm[J].Journal of Intelligent Systems,2012,21(2):195-224. [6] BEZDELC J C.Pattern Recognition with Fuzzy Objective Function Algorithms[M].Berlin:Springer-Verlag,1981:46-52. [7] LI X,WANG J,YIN M.Enhancing the performance of cuckoo search algorithm using orthogonal learning method[J].Neural Computing and Applications,2014,24(6):1233-1247. [8] ONG P.Adaptive cuckoo search algorithm for unconstrained optimization[J].Scientific World Journal,2014,2014:943403. [9] 张永韡,汪镭,吴启迪.动态适应布谷鸟搜索算法[J].控制与决策,2014,29(4):617-622.(ZHANG Y W,WANG L,WU Q D.Dynamic adaptation cuckoo search algorithm[J].Control and Decision,2014,29(4):617-622.) [10] 王李进,尹义龙,钟一文.逐维改进的布谷鸟搜索算法[J].软件学报,2013(11):2687-2698.(WANG L J,YIN Y L,ZHONG Y W.Cuckoo search algorithm with dimension by dimension improvement[J].Journal of Software,2013,24(11):2687-2698.) [11] 胡欣欣,尹义龙.求解连续函数优化问题的合作协同进化布谷鸟搜索算法[J].模式识别与人工智能,2013,26(11):1041-1049.(HU X X,YIN Y L.Cooperative co-evolutionary cuckoo search algorithm for continuous function optimization problems[J].Pattern Recognition and Artificial Intelligence,2013,26(11):1041-1049.) [12] 吴希玉.深化城管改革建设宜居南宁[N].广西日报,2015-12-30(7).(WU X Y.Deepen the reform of urban construction of livable Nanning[N].Guangxi Daily,2015-12-30(7).) [13] 向志强,朱丽莉."互联网+城管"的"青秀探索"[N].新华每日电讯,2016-02-03(7).(XIANG Z Q,ZHU L L.The exploration of Qingxiu based on Internet and urban management[N].Xinhuashenet,2016-02-03(7).) [14] BAGHERI E,DELDARI H.Dejong function optimization by means of a parallel approach to fuzzified genetic algorithm[C]//ISCC'06:Proceedings of the 11th IEEE Symposium on Computers and Communications.Washington,DC:IEEE Computer Society,2006:675-680. [15] HALL L O,OZYURT I B,BEZDEK J C.Clustering with a genetically optimized approach[J].IEEE Transactions on Evolutionary Computation,1999,3(2):103-112. [16] 陆林花,王波.一种改进的遗传聚类算法[J].计算机工程与应用,2007,43(21):170-172.(LU L H,WANG B.Improved genetic algorithm-based clustering approach[J].Computer Engineering and Applications,2007,43(21):170-172.) [17] 傅景广,许刚,王裕国.基于遗传算法的聚类分析[J].计算机工程,2004,30(4):122-124.(FU J G,XU G,WANG Y G.Clustering based on genetic algorithm[J].Computer Engineering,2004,30(4):122-124.) [18] AHMADYFARD A,MODARES H.Combining PSO and k-means to enhance data clustering[C]//IST 2008:Proceedings of the 2008 International Symposium on Telecommunications.Piscataway,NJ:IEEE,2008:688-691. [19] 陈小全,张继红.基于改进粒子群算法的聚类算法[J].计算机研究与发展,2012,49(增刊):287-291.(CHEN X Q,ZHANG J H.Clustering algorithm based on improved particle swarm optimization[J].Journal of Computer Research and Development,2012,49(Suppl.):287-291.) |