Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (7): 2065-2072.DOI: 10.11772/j.issn.1001-9081.2023071045
• Data science and technology • Previous Articles Next Articles
Huanhuan LI, Tianqiang HUANG(), Xuemei DING, Haifeng LUO, Liqing HUANG
Received:
2023-08-02
Revised:
2023-09-25
Accepted:
2023-10-09
Online:
2023-10-26
Published:
2024-07-10
Contact:
Tianqiang HUANG
About author:
LI Huanhuan, born in 1997, M. S. candidate. Her research interests include deep learning, spatial-temporal data mining.Supported by:
通讯作者:
黄添强
作者简介:
李欢欢(1997—),女,贵州遵义人,硕士研究生,主要研究方向:深度学习、时空数据挖掘;基金资助:
CLC Number:
Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network[J]. Journal of Computer Applications, 2024, 44(7): 2065-2072.
李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023071045
数据集 | 维度 | RMSE | MAE | PCC |
---|---|---|---|---|
自行车 | 32 | 3.216 5 | 1.932 0 | 0.720 3 |
64 | 2.967 9 | 1.828 4 | 0.768 0 | |
128 | 2.822 6 | 1.753 2 | 0.790 6 | |
256 | 2.788 6 | 1.737 1 | 0.799 2 | |
出租车 | 32 | 13.659 9 | 8.285 6 | 0.925 3 |
64 | 11.042 5 | 6.694 5 | 0.952 4 | |
128 | 9.573 4 | 5.861 2 | 0.963 1 | |
256 | 9.827 6 | 5.888 7 | 0.963 8 |
Tab. 1 Prediction results of MSTGCN model with different hidden layer dimensions
数据集 | 维度 | RMSE | MAE | PCC |
---|---|---|---|---|
自行车 | 32 | 3.216 5 | 1.932 0 | 0.720 3 |
64 | 2.967 9 | 1.828 4 | 0.768 0 | |
128 | 2.822 6 | 1.753 2 | 0.790 6 | |
256 | 2.788 6 | 1.737 1 | 0.799 2 | |
出租车 | 32 | 13.659 9 | 8.285 6 | 0.925 3 |
64 | 11.042 5 | 6.694 5 | 0.952 4 | |
128 | 9.573 4 | 5.861 2 | 0.963 1 | |
256 | 9.827 6 | 5.888 7 | 0.963 8 |
模型 | 自行车 | ||
---|---|---|---|
RMSE | MAE | PCC | |
HA | 5.200 3 | 3.461 7 | 0.166 9 |
XGBoost | 4.049 4 | 2.469 0 | 0.486 1 |
STGCN | 3.604 2 | 2.760 5 | 0.731 6 |
DCRNN | 3.209 4 | 1.895 4 | 0.722 7 |
STG2Seq | 3.984 3 | 2.497 6 | 0.515 2 |
Graph WaveNet | 3.294 3 | 1.991 1 | 0.700 3 |
CCRNN | |||
DG 2RNN | 2.960 1 | 1.816 2 | 0.775 5 |
本文模型 | 2.788 6 | 1.737 1 | 0.799 2 |
Tab. 2 Prediction results of different models on NYC Bike dataset
模型 | 自行车 | ||
---|---|---|---|
RMSE | MAE | PCC | |
HA | 5.200 3 | 3.461 7 | 0.166 9 |
XGBoost | 4.049 4 | 2.469 0 | 0.486 1 |
STGCN | 3.604 2 | 2.760 5 | 0.731 6 |
DCRNN | 3.209 4 | 1.895 4 | 0.722 7 |
STG2Seq | 3.984 3 | 2.497 6 | 0.515 2 |
Graph WaveNet | 3.294 3 | 1.991 1 | 0.700 3 |
CCRNN | |||
DG 2RNN | 2.960 1 | 1.816 2 | 0.775 5 |
本文模型 | 2.788 6 | 1.737 1 | 0.799 2 |
模型 | 出租车 | ||
---|---|---|---|
RMSE | MAE | PCC | |
HA | 29.780 6 | 16.150 9 | 0.633 9 |
XGBoost | 21.199 4 | 11.680 6 | 0.807 7 |
STGCN | 22.648 9 | 18.455 1 | 0.915 6 |
DCRNN | 14.792 6 | 8.427 4 | 0.912 2 |
STG2Seq | 18.045 0 | 9.941 5 | 0.865 0 |
GraphWaveNet | 13.072 9 | 8.103 7 | 0.932 2 |
CCRNN | |||
DG 2RNN | 9.359 0 | 5.379 9 | 0.966 6 |
本文模型 | 9.573 4 | 5.861 2 | 0.963 1 |
Tab. 3 Prediction results of different models on NYC Taxi dataset
模型 | 出租车 | ||
---|---|---|---|
RMSE | MAE | PCC | |
HA | 29.780 6 | 16.150 9 | 0.633 9 |
XGBoost | 21.199 4 | 11.680 6 | 0.807 7 |
STGCN | 22.648 9 | 18.455 1 | 0.915 6 |
DCRNN | 14.792 6 | 8.427 4 | 0.912 2 |
STG2Seq | 18.045 0 | 9.941 5 | 0.865 0 |
GraphWaveNet | 13.072 9 | 8.103 7 | 0.932 2 |
CCRNN | |||
DG 2RNN | 9.359 0 | 5.379 9 | 0.966 6 |
本文模型 | 9.573 4 | 5.861 2 | 0.963 1 |
数据集 | RMSE | MAE | PCC | |
---|---|---|---|---|
自行车 | 3 | 2.922 9 | 1.832 0 | 0.772 0 |
5 | 2.851 0 | 1.750 9 | 0.788 9 | |
7 | 2.788 6 | 1.737 1 | 0.799 2 | |
9 | 2.850 8 | 1.746 8 | 0.789 5 | |
出租车 | 3 | 18.154 6 | 10.895 0 | 0.865 1 |
5 | 9.573 4 | 5.861 2 | 0.963 1 | |
7 | 10.601 4 | 6.426 2 | 0.957 2 | |
9 | 15.689 6 | 9.929 6 | 0.902 9 |
Tab. 4 Prediction results with different k
数据集 | RMSE | MAE | PCC | |
---|---|---|---|---|
自行车 | 3 | 2.922 9 | 1.832 0 | 0.772 0 |
5 | 2.851 0 | 1.750 9 | 0.788 9 | |
7 | 2.788 6 | 1.737 1 | 0.799 2 | |
9 | 2.850 8 | 1.746 8 | 0.789 5 | |
出租车 | 3 | 18.154 6 | 10.895 0 | 0.865 1 |
5 | 9.573 4 | 5.861 2 | 0.963 1 | |
7 | 10.601 4 | 6.426 2 | 0.957 2 | |
9 | 15.689 6 | 9.929 6 | 0.902 9 |
数据集 | RMSE | MAE | PCC | |
---|---|---|---|---|
自行车 | 5 | 2.890 1 | 1.789 2 | 0.782 0 |
10 | 2.876 4 | 1.780 0 | 0.784 2 | |
15 | 2.788 6 | 1.737 1 | 0.799 2 | |
20 | 3.088 3 | 1.908 5 | 0.745 5 | |
出租车 | 5 | 9.573 4 | 5.861 2 | 0.963 1 |
10 | 10.322 8 | 6.184 0 | 0.958 4 | |
15 | 10.200 6 | 6.155 5 | 0.959 6 | |
20 | 24.508 1 | 14.633 0 | 0.733 0 |
Tab. 5 Prediction results with different β
数据集 | RMSE | MAE | PCC | |
---|---|---|---|---|
自行车 | 5 | 2.890 1 | 1.789 2 | 0.782 0 |
10 | 2.876 4 | 1.780 0 | 0.784 2 | |
15 | 2.788 6 | 1.737 1 | 0.799 2 | |
20 | 3.088 3 | 1.908 5 | 0.745 5 | |
出租车 | 5 | 9.573 4 | 5.861 2 | 0.963 1 |
10 | 10.322 8 | 6.184 0 | 0.958 4 | |
15 | 10.200 6 | 6.155 5 | 0.959 6 | |
20 | 24.508 1 | 14.633 0 | 0.733 0 |
1 | XU J, RAHMATIZADEH R, BÖLÖNI L, et al. Real-time prediction of taxi demand using recurrent neural networks [J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19( 8): 2572- 2581. |
2 | ZHANG J, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction [C]// Proceedings of the 31 st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 1655- 1661. |
3 | YAO H, WU F, KE J, et al. Deep multi-view spatial-temporal network for taxi demand prediction [C]// Proceedings of the 32 nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 2588- 2595. |
4 | LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [C/OL]// Proceedings of the 6th International Conference on Learning Representations. New York: PLMR [ 2023-07-01]. . |
5 | 周榆欣, 邬群勇. CLAB模型:一种乘客出租出行需求短时预测的深度学习模型[J]. 地球信息科学学报, 2023, 25( 1): 77- 89. |
ZHOU Y X, WU Q Y. CLAB model: a deep learning model for short-term prediction of passenger rental travel demand [J]. Journal of Geo-Information Science, 2023, 25( 1): 77- 89. | |
6 | 王博伟, 邓君, 吕斌. 基于WCGAN的出租车需求热点预测[J]. 计算机工程与应用, 2023, 59( 12): 293- 300. |
WANG B W, DENG J, LYU B. Hotspot forecast of taxi demand based on WCGAN [J]. Computer Engineering and Applications, 2023, 59( 12): 293- 300. | |
7 | 陈柘, 刘嘉华, 赵斌, 等. 基于GCN和TCN的多因素城市路网出租车需求预测[J]. 控制与决策, 2023, 38( 4): 1031- 1038. |
CHEN Z, LIU J H, ZHAO B, et al. Multi-factor taxi demand forecasting for urban road network based on GCN and TCN [J]. Control and Decision, 2023, 38( 4): 1031- 1038. | |
8 | 董成祥, 魏昕, 张坤鹏, 等. 基于图卷积网络的乘客打车需求预测[J]. 工业工程, 2022, 25( 5): 98- 105. |
DONG C X, WEI X, ZHANG K P, et al. Passenger ride-hailing demand prediction based on graph convolutional networks [J]. Industrial Engineering Journal, 2022, 25( 5): 98- 105. | |
9 | 魏远, 林彦, 郭晟楠, 等. 融合出发地与目的地时空相关性的城市区域间出租车需求预测[J]. 计算机应用, 2023, 43( 7): 2100- 2106. |
WEI Y, LIN Y, GUO S N, et al. Prediction of taxi demands between urban regions by fusing origin-destination spatial-temporal correlation [J]. Journal of Computer Applications, 2023, 43( 7): 2100- 2106. | |
10 | ZHANG D, LI J. Multi-view fusion neural network for traffic demand prediction [J]. Information Sciences, 2023, 646: 119303. |
11 | 黄昕, 毛政元. 基于时空多图卷积网络的网约车乘客需求预测[J]. 地球信息科学学报, 2023, 25( 2): 311- 323. |
HUANG X, MAO Z Y. Prediction of passenger demand for online car-hailing based on spatio-temporal multi-graph convolution network [J]. Journal of Geo-Information Science, 2023, 25( 2): 311- 323. | |
12 | XU H, ZOU T, LIU M, et al. Adaptive spatiotemporal dependence learning for multi-mode transportation demand prediction [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23( 10): 18632- 18642. |
13 | SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34( 1): 914- 921. |
14 | WU Z, PAN S, LONG G, et al. Graph wavenet for deep spatial-temporal graph modeling [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 1907- 1913. |
15 | YE J, SUN L, DU B, et al. Coupled layer-wise graph convolution for transportation demand prediction [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35( 5): 4617- 4625. |
16 | SHANG C, CHEN J, BI J. Discrete graph structure learning for forecasting multiple time series [EB/OL]. ( 2021-02-15) [ 2023-07-01]. . |
17 | YE J, LIU Z, DU B, et al. Learning the evolutionary and multi-scale graph structure for multivariate time series forecasting [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 2296- 2306. |
18 | MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Predicting taxi-passenger demand using streaming data [J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14( 3): 1393- 1402. |
19 | TONG Y, CHEN Y, ZHOU Z, et al. The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms [C]// Proceedings of the 23 rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 1653- 1662. |
20 | WU C-H, J-M HO, LEE D-T. Travel-time prediction with support vector regression [J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5( 4): 276- 281. |
21 | GONG Y, ZHANG Y. Research of short-term traffic volume prediction based on Kalman filtering [C]// Proceedings of the 2013 6th International Conference on Intelligent Networks and Intelligent Systems. Piscataway: IEEE, 2013: 99- 102. |
22 | RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks [J]. Science, 2014, 344( 6191): 1492- 1496. |
23 | YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 3634- 3640. |
24 | BAI L, YAO L, KANHERE S S, et al. Stg2 seq: spatial-temporal graph to sequence model for multi-step passenger demand forecasting [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 1981- 1987. |
25 | ZHAO J, CHEN C, LIAO C, et al. 2F-TP: learning flexible spatiotemporal dependency for flexible traffic prediction [J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24( 12): 15379- 15391. |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[3] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[4] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[5] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[6] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[7] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[8] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[9] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[10] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[11] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[12] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[13] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[14] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[15] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||