[1] MCELIECE R J. A public-key cryptosystem based on algebraic coding theory [EB/OL]. [2015-10-24]. https://www.cs.colorado.edu/~jrblack/class/csci7000/f03/papers/mceliece.pdf. [2] BALDI M. QC-LDPC code-based cryptosystems [M]// BALDI M. QC-LDPC Code-based Cryptography. Berlin: Springer, 2014: 91-117. [3] GEORGIEVA M, DE PORTZAMPARC F. Toward secure imple-mentation of McEliece decryption [C]// MANGARD S, POSCHMANN A Y. Constructive Side-Channel Analysis and Secure Design, LNCS 9064. Berlin: Springer, 2015: 141-156. [4] 张颖,岳殿武.基于代数几何码的公钥密码体制[J].通信学报,2008,29(6):75-81.(ZHANG Y, YUE D W. Public key cryptography based on algebraic geometric codes [J]. Journal on Communications, 2008, 29(6): 75-81.) [5] BALDI M, BIANCHI M, MATURO N, et al. Improving the efficiency of the LDPC code-based McEliece cryptosystem through irregular codes [C]// Proceedings of the 2013 IEEE Symposium on Computers and Communications. Washington, DC: IEEE Computer Society, 2013: 197-202. [6] BALDI M, BIANCHI M, CHIARALUCE F, et al. Using LDGM codes and sparse syndromes to achieve digital signatures [C]// GABORIT P. Post-Quantum Cryptography, LNCS 7932. Berlin: Springer, 2013: 1-15. [7] COURTOIS N T, FINIASZ M, SENDRIER N. How to achieve a McEliece-based digital signature scheme [C]// BOYD C. Advances in Cryptology—ASIACRYPT 2001, LNCS 2248. Berlin: Springer, 2001: 157-174. [8] BERLEKAMP E R, MCELIECE R J, VAN TILBORG H C A. On the inherent intractability of certain coding problems [J]. IEEE Transactions on Information Theory, 1978, 24(3): 384-386. [9] CHENG J F, MCELIECE R J. Some high-rate near capacity codecs for the Gaussian channel [EB/OL]. [2015-11-14]. http://xueshu.baidu.com/s?wd=paperuri%3A%282738fdc6421751d8f7b9827de8cdfe23%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Bjsessionid%3DECAFAC735A595F2AB5705FB3150963F3%3Fdoi%3D10.1.1.57.6071%26rep%3Drep1%26type%3Dpdf&ie=utf-8&sc_us=13201804057768292757. [10] GARCIA-FRIAS J, ZHONG W. Approaching Shannon performance by iterative decoding of linear codes with low-density generator matrix [J]. IEEE Communications Letters, 2003, 7(6): 266-268. [11] GONZÁLEZ-LÓPEZ M, VAZQUEZ-ARAUJO F J, CASTEDO L, et al. Serially-Concatenated Low-Density Generator Matrix (SCLDGM) codes for transmission over AWGN and Rayleigh fading channels [J]. IEEE Transactions on Wireless Communications, 2007, 6(8): 2753-2758. [12] MALONELEE J, MAO W. Two birds one stone: signcryption using RSA [C]// Topics in Cryptology — CT-RSA 2003. Berlin: Springer, 2003: 211-226. [13] ZHENG Y. Digital signcryption or how to achieve cost (signature & encryption) << cost (signature)+ cost (encryption) [C]// Advances in Cryptology—Crypto'97, LNCS 1294. Berlin: Springer, 1997: 165-179. |