Journal of Computer Applications ›› 2017, Vol. 37 ›› Issue (1): 188-196.DOI: 10.11772/j.issn.1001-9081.2017.01.0188
Previous Articles Next Articles
WANG Qiang, ZHANG Peilin, WANG Huaiguang, YANG Wangcan, CHEN Yanlong
Received:
2016-08-06
Revised:
2016-09-06
Online:
2017-01-09
Published:
2017-01-10
Supported by:
王强, 张培林, 王怀光, 杨望灿, 陈彦龙
通讯作者:
张培林
作者简介:
王强(1992-),男,山东栖霞人,硕士研究生,主要研究方向:信号处理、数据压缩;张培林(1955-),男,安徽太和人,教授,博士,主要研究方向:机械状态监测、故障诊断;王怀光(1979-),男,河北石家庄人,讲师,博士,主要研究方向:信号处理、数据压缩;杨望灿(1988-),男,河北辛集人,博士研究生,主要研究方向:故障诊断、模式识别;陈彦龙(1987-),男,四川资阳人,博士研究生,主要研究方向:故障诊断、信号处理。
基金资助:
CLC Number:
WANG Qiang, ZHANG Peilin, WANG Huaiguang, YANG Wangcan, CHEN Yanlong. Survey on construction of measurement matrices in compressive sensing[J]. Journal of Computer Applications, 2017, 37(1): 188-196.
王强, 张培林, 王怀光, 杨望灿, 陈彦龙. 压缩感知中测量矩阵构造综述[J]. 计算机应用, 2017, 37(1): 188-196.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2017.01.0188
[1] CANDES E J, ROMBERG J. Quantitative robust uncertainty principles and optimally sparse decompositions[J]. Foundation of Computational Mathematics, 2006, 6(2):227-254. [2] CANDES E J, ROMBERG J K, TAO T. Robust uncertainty principles:exact signal reconstruction from high incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2):489-509. [3] CANDES E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8):1207-1223. [4] BOUCHHIMA B, AMARA R, ALOUANE T H. Design of optimal matrices for compressive sensing:application to environmental sounds[C]//Proceedings of the 2015 Signal Processing Conference. Piscataway, NJ:IEEE, 2015:130-134. [5] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. [6] 王强,李佳,沈毅.压缩感知中确定性测量矩阵构造算法综述[J].电子学报,2013,41(10):2041-2050.(WANG Q, LI J, SHEN Y. A survey on deterministic measurement matrix construction algorithms in compressive sensing[J]. Acta Electronica Sinica, 2013, 41(10):2041-2050.) [7] 焦李成,杨淑媛,刘芳,等.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662.(JIAO L C, YANG S Y, LIU F, et al. Development and prospect of compressive sensing[J]. Acta Electronica Sinica, 2011, 39(7):1651-1662.) [8] ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Information Theory, 2006, 15(12):3736-3745. [9] AHARON M, ELAD M, BRUCKSTEIN A M. The K-SVD:an algorithm for designing of overcomplete dictionaries for sparse representations[J]. IEEE Transactions on Image Processing, 2006, 54(11):4311-4322. [10] CANDES E J, TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215. [11] CANDES E J. The restricted isometry property and its implication for compressed sensing[J]. Comtes Rendus Mathematique, 2008, 346(9/10):589-592. [12] MALLAT S, ZHANG Z F. Matching pursuits with time frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415. [13] TROPP J A, GILBERT A C. Signal recovery from random measurement via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666. [14] NEEDELL D, TROPP J A. CoSaMP:iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2008, 26(3):301-321. [15] CHEN S B, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1):33-61. [16] APPLEBAUM L, HOWARD S, SEARLE S, et al. Chirp sensing codes:deterministic compressed sensing measurements for fast recovery[J]. Applied and Computational Harmonic Analysis, 2009, 26(2):283-290. [17] ROMBERG J. Compressive sensing by random convolution[J]. SIAM Journal on Imaging Sciences, 2009, 2(4):1098-1128. [18] CANDES E J, TAO T. Near-optimal signal recovery from random projections:universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12):5406-5425. [19] ARMIN E, LUN Y H, CHRISTOPHER J R, et al. The restricted isometry property for random block diagonal matrices[J]. Applied & Computational Harmonic Analysis, 2015, 38(1):1-31. [20] BARANIUK R, DAVENPORT M, DEVORE R, et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 2008, 28(3):253-263. [21] JOHNSON W, LINDENSTRAUSS J. Extensions of Lipschitz maps into a Hilbert space[J]. Contemporary Mathematics, 1984, 26:189-206.(无期) [22] XU W, HASSIBI B. Efficient compressive sensing with deterministic guarantees using expander graphs[C]//ITW'07:Proceedings of the 2007 Information Theory Workshop. Piscataway, NJ:IEEE, 2007:414-419. [23] BERINDE R, GILBERT A C, INDYK P, et al. Combining geometry and combinatorics:a unified approach to sparse signal[EB/OL].[2016-05-15] . https://arxiv.org/abs/0804.4666. [24] CALDERBANK R, HOWARD S, JAFARPOUR S. Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):358-374. [25] RAGINSKY M, JAFARPOUR S, HARMANY Z T, et al. Performance bounds for expander-based compressed sensing in Poisson noise[J]. IEEE Transactions on Signal Processing, 2011, 59(9):4139-4153. [26] DONOHO D L, ELAD M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[J]. Proceedings of the National Academy of Sciences, 2003, 100(5):2197-2202.ELAD M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12):5695-5702.文献26与49是同一个文献,是删除其中一个,还是替换其中一个?若删除,相应地正文中的引用顺序和后面的文献列表编号要相应调整。若替换为另一个,则最为简单,建议替换,注意,替换的文献不要与其他的文献再重复了。回复:建议将文献26进行替换,替换为:DONOHO D L,ELAD M. Optimally sparse representation in general(nonorthogonal) dictionaries via l1 minimization[J]. Proceedings of the National Academy of Sciences, 2003, 100(5):2197-202. [27] TROPP J A. Greed is good:algorithmic results for sparse approximation[J]. IEEE Transactions on Information Theory, 2004, 50(10):2231-2242. [28] RAUHUT H, SCHNASS K, VANDERGHEYNST P. Compressed sensing and redundant dictionaries[J]. IEEE Transactions on Information Theory, 2008, 54(5):2210-2219. [29] ELAD M, BRUCKSTEIN A M. A generalized uncertainty principle and sparse representation in pairs bases[J]. IEEE Transactions on Information Theory, 2002, 48(9):2558-2567. [30] KASHIN B S, TEMLYAKOV V N. A remark on compressed sensing[J]. Mathematics and Statistics, 2007, 42(5/6):748-755. [31] ZHANG G, JIAO S, XU X, et al. Compressed sensing and reconstruction with Bernoulli matrices[C]//Proceedings of the 2010 International Conference on Information and Automation. Piscataway, NJ:IEEE, 2010:455-460 [32] GILBERT A C, GUHA S, INDYK P. Near-optimal sparse Fourier representation via sampling[C]//Proceedings on the 34th Annual ACM Symposium on Theory of Computing. New York:ACM, 2006:152-161. [33] BERINDE R, INDYK P. Sparse recovery using sparse random matrices[C]//LATIN 2010:Proceedings of the 9th Latin American Symposium on Theoretical Informatics, LNCS 6034. Berlin:Springer, 2010:157-157. [34] ZENG L, ZHANG X, CHEN L, et al. Deterministic construction of Toeplitzed structurally chaotic matrix for compressed sensing[J]. Circuits, Systems, and Signal Processing, 2015, 34(3):797-813.DEVORE R A. Deterministic constructions of compressed sensing matrices[J]. Journal of Complexity, 2007, 23(4/5/6):918-925.文献34与35是同一个文献,是删除其中一个,还是替换其中一个?若删除,相应地正文中的引用顺序和后面的文献列表编号要相应调整。若替换为另一个,则最为简单,建议替换,注意,替换的文献不要与其他的文献再重复了。回复:文献34替换为:ZENG L, ZHANG X, CHEN L, et al. Deterministic Construction of Toeplitzed Structurally Chaotic Matrix for Compressed Sensing[J]. Circuits, Systems, and Signal Processing, 2015, 34(3):797-813. [35] DEVORE R A. Deterministic construction of compressed sensing[J]. Journal of Complexity, 2007, 23(4/5/6):918-925. [36] NAM Y Y, NA Z. Deterministic construction of real-valued ternary sensing matrices using optical orthogonal codes[J]. IEEE Signal Processing Letters, 2013, 20(11):1106-1109. [37] BRICKELL E F, WEI V K. Optical orthogonal codes and cyclic block designs[J].Congr NumerCongressus Numerantium补充全称, 1987, 58:175-192. [38] AMINI A, MONTAZERHODJAT V, MARVASTI F. Matrices with small coherence using parry block codes[J]. IEEE Transactions on Signal Processing, 2012, 60(1):172-181. [39] LI S X, GAO F, GE G N, et al. Deterministic construction of compressed sensing matrices via algebraic curves[J]. IEEE Transactions on Information Theory, 2012, 58(8):5035-5041. [40] GE X, XIA S T. LDPC codes based on Berlekamp-Justesen codes with large stopping distances[C]//ITW'06:Proceedings of the 2006 IEEE Information Theory Workshop. Piscataway, NJ:IEEE, 2006:214-218. [41] DIMAKIS A G, SMARANDACHE R, VONTOBEL P O. LDPC codes for compressed sensing[J]. IEEE Transactions on Information Theory, 2010, 58(5):3093-3114. [42] DO T T, TRAN T D, LU G. Fast compressive sampling with structurally random matrices[C]//Proceedings of the 2008 IEEE International Conference on Acoustics. Piscataway, NJ:IEEE, 2008:3369-3372. [43] 李浩.用于压缩感知的确定性测量矩阵研究[D].北京:北京交通大学,2011:26-38.(LI H. Research on deterministic measurement matrix for compressed sensing[D]. Beijing:Beijing Jiaotong University, 2011:26-38.) [44] BAJWA W U, HAUPT J D, RAZ G M, et al. Toeplitz-structured compressed sensing matrices[C]//SSP' 07:Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing. Washington, DC:IEEE Computer Society, 2007:294-298. [45] SALIGRAMA V. Deterministic designs with deterministic guarantees:Toeplitz compressed sensing matrices, sequence design and system ID[J]. IEEE Transactions on Information Theory, 2012, 99(PP):1-1. [46] SEBERT F, ZOU Y M, YING L. Toeplitz block matrices in compressed sensing and their applications in imagine[C]//Proceedings of the 2008 International Conference on Information Technology and Applications in Biomedicine, Piscataway, NJ:IEEE, 2008:47-50. [47] SUN J M, WANG S, DONG Y. Sparse block circulant matrices for compressed sensing[J]. IET Communications, 2013, 7(13):1412-1418. [48] 夏树涛,刘璐,刘鑫吉.基于Berlekamp-Justesen码的压缩感知确定性测量矩阵的构造[J].电子与信息学报,2015,37(4):763-769.(XIA S T, LIU L, LIU X J. Deterministic constructions of compressive sensing matrices based on Berlekamp-Justesen codes[J]. Journal of Electronics & Information Technology, 2015, 37(4):763-769. [49] ELAD M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12):5695-5702. [50] 张劲东,张弓,潘汇,等.基于滤波器结构的压缩感知雷达感知矩阵优化[J].航空学报,2013,34(4):866-868.(ZHANG J D, ZHANG G, PAN H, et al. Optimized sensing matrix design of filter structure based compressed sensing radar[J]. Acta Aeeronautica et Astronautica Sinica, 2013, 34(4):866-868.) [51] LI B, SHEN Y, LI J. Dictionaries construction using alternating projection method in compressive sensing[J]. IEEE Signal Processing Letters, 2011, 18(11):662-666. [52] 赵瑞珍,秦周,胡绍海,等.一种特征值分解的测量矩阵优化方法[J].信号处理,2012,38(5):654-656.(ZHAO R Z, QIN Z, HU S H, et al. An optimization method for measurement matrix based on eigenvalue decomposition[J]. Signal Processing, 2012, 38(5):654-656.) [53] DUARTE-CARVAJALINO J M, SAPIRO G. Learning to sense sparse signal:simultaneous sensing matrix and sparsifying dictionary optimization[J]. IEEE Transactions on Imagine Processing, 2009, 18(7):1395-1408. [54] ABOLGHASEMI V, SAIDEH F, BAHADOR M. On optimization of the measurement matrix for compressive sensing[C]//EUSIPCO 2010:Proceedings of the 18th European Signal Processing Conference, 2010:23-27. [55] ZHANG J D, ZHU D Y, ZHANG G. Adaptive compressed sensing radar oriented towards cognitive detection in dynamic sparse target scene[J]. IEEE Transactions on Signal Processing, 2012, 60(4):1718-1729. |
[1] | Jing QIN, Fali SUN, Fang HUI, Zumin WANG, Bing GAO, Changqing JI. Review of key technology and application of wearable electroencephalogram device [J]. Journal of Computer Applications, 2022, 42(4): 1029-1035. |
[2] | SONG Zihui, LI Zhuo, CHEN Xin. Mobile crowdsensing task distribution mechanism based on compressed sensing [J]. Journal of Computer Applications, 2019, 39(1): 15-21. |
[3] | WANG Aizhen, HU Jiao, HAN Hangcheng. Capture method of direct sequence spread spectrum signal based on cascade stochastic resonance [J]. Journal of Computer Applications, 2018, 38(7): 2020-2023. |
[4] | JIN Feng, TANG Hong, ZHANG Jinyan, YIN Lixin. Pilot optimization and channel estimation in massive multiple-input multiple-output systems based on compressive sensing [J]. Journal of Computer Applications, 2018, 38(5): 1447-1452. |
[5] | LI Zhou, CUI Chen. Observation matrix optimization algorithm in compressive sensing based on singular value decomposition [J]. Journal of Computer Applications, 2018, 38(2): 568-572. |
[6] | WU Hailong, BAI Zhengyao, ZHANG Yu, HE Qian. Design and realization of low frequency radio astronomical signal acquisition circuit based on modulated wideband converter [J]. Journal of Computer Applications, 2018, 38(2): 610-614. |
[7] | DU Xiuli, ZHANG Wei, CHEN Bo. Ripple matrix permutation-based sparsity balanced block compressed sensing algorithm [J]. Journal of Computer Applications, 2018, 38(12): 3541-3546. |
[8] | WANG Xingxing, LI Guocheng. Sparse signal reconstruction optimization algorithm based on recurrent neural network [J]. Journal of Computer Applications, 2017, 37(9): 2590-2594. |
[9] | SONG Yang, HUANG Zhiqing, ZHANG Yanxin, LI Mengjia. Dynamic sampling method for wireless sensor network based on compressive sensing [J]. Journal of Computer Applications, 2017, 37(1): 183-187. |
[10] | LIU Jinlong, XIONG Chengyi, GAO Zhirong, ZHOU Cheng, WANG Shuxian. Image compressive sensing reconstruction via total variation and adaptive low-rank regularization [J]. Journal of Computer Applications, 2016, 36(1): 233-237. |
[11] | LIU Yanxing, DANG Xiaochao, HAO Zhanjun, DONG Xiaohui. Design method of measurement matrix for compressive sensing in wireless sensor network [J]. Journal of Computer Applications, 2015, 35(11): 3043-3046. |
[12] | LI Lina ZENG Qingxun GAN Xiaoye LIANG Desu. Under-determined blind source separation based on potential function and compressive sensing [J]. Journal of Computer Applications, 2014, 34(3): 658-662. |
[13] | ZHANG Zongnian LI Jinhui HUANG Rentai YAN Jingwen. Iterative Hard Thresholding Orthogonal Projection under Cosparsity Analysis Model [J]. Journal of Computer Applications, 2013, 33(08): 2387-2389. |
[14] | JIANG Shan QIU Hongbing HAN Xu. Sparsity adaptive matching pursuit algorithm based on adaptive threshold for OFDM sparse channel estimation [J]. Journal of Computer Applications, 2013, 33(06): 1508-1514. |
[15] | QIN Feng SUN Fengrong SONG Shangling ZHANG Xinping LI Xincai. Iterative image reconstruction for differential phase contrast CT based on compressive sensing [J]. Journal of Computer Applications, 2013, 33(06): 1732-1736. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||