[1] McGRAW I, PRABHAVALKAR R, ALVAREZ R, et al. Personalized speech recognition on mobile devices[C]//ICASSP 2016:Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE, 2016:5955-5959. [2] BRIDA P, PICHÉ R, KOTSOPOULUS S, et al. Enabling technologies for smart mobile services[J]. Mobile Information Systems, 2016, 2016:Article ID 3196046. [3] ASHLEY-DEJO E, NGWIRA S, ZUVA T. A survey of context-aware recommender system and services[C]//ICCCS 2015:Proceedings of the 2015 International Conference on Computing, Communication and Security. Piscataway, NJ:IEEE, 2015:1-6. [4] 王立才,孟祥武, 张玉洁.上下文感知推荐系统[J].软件学报,2012,23(1):1-20. (WANG L C, MENG X W, ZHANG Y J. Context-aware recommender systems[J]. Journal of Software, 2012, 23(1):1-20.) [5] NILASHI M, BAGHERIFARD K, IBRAHIM O, et al. Collaborative filtering recommender systems[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 5(16):4168-4182. [6] SHI Y, LRASON M, HANJIALIC A. Collaborative filtering beyond the user-item matrix:a survey of the state of the art and future challenges[J]. ACM Computing Surveys, 2014, 47(1):Article No. 3. [7] ACHAKULVISUT T, ACUNA D E, RUANGRONG T, et al. Science concierge:a fast content-based recommendation system for scientific publications[J]. PLOS ONE, 2016, 11(7):e0158423. [8] DE CAMPOS L M, FERNÁNDEZ-LUNA J M, HUETE J F, et al. Combining content-based and collaborative recommendations:a hybrid approach based on Bayesian networks[J]. International Journal of Approximate Reasoning, 2010, 51(7):785-799. [9] 徐风苓,孟祥武,王立才.基于移动用户上下文相似度的协同过滤推荐算法[J].电子与信息学报,2011,33(11):2785-2789. (XU F L, MENG X W, WANG L C. A collaborative filtering recommendation algorithm based on context similarity for mobile users[J]. Journal of Electronics & Information Technology, 2011, 33(11):2785-2789.) [10] SHI Y, KARATZOGLOU A, BALTRUNAS L, et al. CARS2:learning context-aware representations for context-aware recommendations[C]//CIKM' 14:Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. New York:ACM, 2014:291-300. [11] ZAMMALI S, AROUR K, BOUZEGHOUB A. A context features selecting and weighting methods for context-aware recommendation[C]//COMPSAC 2015:Proceedings of the 2015 IEEE 39th Annual International Computer Software and Applications Conference. Washington, DC:IEEE Computer Society, 2015:575-584. [12] WASID M, KANT V, ALI R. Frequency-based similarity measure for context-aware recommender systems[C]//ICACCI 2016:Proceedings of the 2016 International Conference on Advances in Computing, Communications and Informatics. Piscataway, NJ:IEEE, 2016:627-632. [13] CHEN A. Context-aware collaborative filtering system:predicting the user's preference in the ubiquitous computing environment[C]//LoCA 2005:Proceedings of the 2005 International Symposium on Location-and Context-Awareness, LNCS 3479. Berlin:Springer-Verlag, 2005:244-253. [14] CHOI K, SUH Y. A new similarity function for selecting neighbors for each target item in collaborative filtering[J]. Knowledge-Based Systems, 2013, 37:146-153. [15] KARATZOGLOU A, AMATRIAIN X, BALTRUNAS L, et al. Multiverse recommendation:n-dimensional tensor factorization for context-aware collaborative filtering[C]//Recsys 2010:Proceedings of the 4th ACM Conference on Recommender Systems. New York:ACM. 2010:79-86. |