[1] 王娜,任婷.移动社交网站中的信息过载与个性化推荐机制研究[J]. 情报杂志,2015,34(8):190-194.(WANG N, REN T. Information overload and personalized recommendations mechanism in the mobile social networking sites[J]. Journal of Intelligence, 2015,34(8):190-194.) [2] SAWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//WWW'01:Proceedings of the 10th International Conference on World Wide Web. New York:ACM, 2001:285-295. [3] 孙小华.协同过滤系统的稀疏性与冷启动问题研究[D].杭州:浙江大学,2005.(SUN X H. Research on sparseness and cold start of collaborative filtering system[D]. Hangzhou:Zhejiang University, 2005.) [4] 冷亚军,陆青,梁昌勇.协同过滤推荐技术综述[J].模式识别与人工智能,2014,27(8):720-734.(LENG Y J, LU Q, LIANG C Y. Survey of recommendation based on collaborative filtering[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(8):720-734.) [5] 黄创光,印鉴,汪静,等.不确定近邻的协同过滤推荐算法[J].计算机学报, 2010,33(8):1369-1377.(HUANG C G, YIN J, WANG J, et al. Uncertain neighbors' collaborative filtering recommendation algorithm[J]. Chinese Journal of Computers, 2010, 33(8):1369-1377.) [6] 时念云,葛晓伟,马力.基于用户人口统计特征与信任机制的协同推荐[J]. 计算机工程, 2016,42(6):180-184.(SHI N Y, GE X W, MA L. Collaborative recommendation based on user demographics and trust mechanism[J]. Computer Engineering, 2016, 42(6):180-184.) [7] YU K, XU X, ESTER M, et al. Feature weighting and instance selection for collaborative filtering:an information-theoretic approach[J]. Knowledge and Information Systems, 2003, 5(2):201-224. [8] 任看看,钱雪忠.协同过滤算法中的用户相似性度量方法研究[J].计算机工程,2015,41(8):18-22.(REN K K, QIAN X Z. Research on user similarity measure method in collaborative filtering algorithm[J]. Computer Engineering, 2015, 41(8):18-22.) [9] AL-SHAMRI M Y H, AL-ASHWAL N H. Fuzzy-weighted similarity measures for memory-based collaborative recommender systems[J]. Journal of Intelligent Learning Systems and Applications, 2014, 6(1):1-10. [10] 陈雪,黄智力,罗键.基于相对相似度关系的三角模糊数型不确定多属性决策法[J].控制与决策,2016,31(12):2232-2240.(CHEN X, HUANG Z L, LUO J. Approach for triangular fuzzy number-based uncertain multi-attribute decision making based on relative similarity degree relation[J]. Control and Decision, 2016, 31(12):2232-2240.) [11] 胡伟健,滕飞,李灵芳.适应用户兴趣变化的改进型协同过滤算法[J]. 计算机应用,2016,36(8):2087-2091.(HU W J, TENG F, LI L F. Improved adaptive collaborative filtering algorithm to change of user interest[J]. Journal of Computer Applications, 2016, 36(8):2087-2091.) [12] 贾冬艳,张付志.基于双重邻居选取策略的协同过滤推荐算法[J].计算机研究与发展,2013,50(5):1076-1084.(JIA D Y, ZHANG F Z. A collaborative filtering recommendation algorithm based on double neighbor choosing strategy[J]. Journal of Computer Research and Development, 2013, 50(5):1076-1084.) [13] 王明佳,韩景倜.基于用户对项目属性偏好的协同过滤算法[J].计算机工程与应用,2017,53(6):106-110.(WANG M J, HAN J T. Collaborative filtering algorithm based on item attribute preference[J]. Computer Engineering and Applications, 2017, 53(6):106-110.) [14] POLATIDIS N, GEORGIADIS C K. A multi-level collaborative filtering method that improves recommendations[J]. Expert Systems with Applications, 2016,48:100-110. [15] 张南,林晓勇,史晟辉.基于改进型启发式相似度模型的协同过滤推荐方法[J].计算机应用,2016,36(8):2246-2251.(ZHANG N, LIN X Y, SHI S H. Collaborative filtering recommendation method based on improved heuristic similarity model[J]. Journal of Computer Applications, 2016, 36(8):2246-2251.) |