[1] GUDER J. Discounted knapsack problems for pairs of items[D]. Nuremberg:University of Erlangen-Nurnberg, 2005.
[2] GULDAN B. Heuristic and exact algorithms for discounted knapsack prob1ems[D]. Nuremberg:University of Erlangen-Nuremberg, 2007.
[3] 贺毅朝,王熙照,李文斌,等.基于遗传算法求解折扣{0-1}背包问题的研究[J].计算机学报,2016,39(12):2614-2630.(HE Y C, WANG X Z, Ll W B, et al. Research on genetic algorithms for the discounted {0-1} knapsack problem[J]. Chinese Journal of Computers, 2016, 39(12):2614-2630.)
[4] 杨洋,潘大志,刘益,等.折扣{0-1}背包问题的简化新模型及遗传算法求解[J].计算机应用,2019,39(3):656-662.(YANG Y, PAN D Z, LIU Y, et al. New simplified model of discounted {0-1} knapsack problem and solution by genetic algorithm[J]. Journal of Computer Applications, 2019, 39(3):656-662.)
[5] RONG A Y, FIGUEIRA J R, KLAMROTH K. Dynamic programming based algorithms for the discounted {0-1} knapsack problem[J]. Applied Mathematics and Computation, 2012, 218(12):6921-6933.
[6] HE Y C, WANG X Z, HE Y L, et al. Exact and approximate algorithms for discounted {0-1} knapsack problem[J]. Information Sciences, 2016, 369(10):634-647.
[7] 杨洋,潘大志,贺毅朝.改进修复策略遗传算法求解折扣{0-1}背包问题[J].计算机工程与应用,2018,54(21):37-42.(YANG Y, PAN D Z, HE Y C. Improved repair strategy genetic algorithm solve discount {0-1} knapsack problem[J]. Computer Engineering and Applications, 2018, 54(21):37-42.)
[8] 杨洋,潘大志,贺毅朝.核加速遗传算法求解折扣{0-1}背包问题[J].西华师范大学学报(自然科学版),2018,39(2):165-172.(YANG Y, PAN D Z, HE Y C. Core accelerated genetic algorithm to solve the discount {0-1} knapsack problem[J].Journal of China West Normal University (Natural Sciences edition), 2018, 39(2):165-172.)
[9] FENG Y H, WANG G G, LI W, et al. Multi-strategy monarch butterfly optimization algorithm for discounted {0-1} knapsack problem[J]. Neural Computing and Applications, 2018, 30(10):3019-3016.
[10] 冯艳红,杨娟,贺毅朝,等.差分进化帝王蝶优化算法求解折扣{0-1}背包问题[J].电子学报,2018,46(6):1343-1350.(FENG Y H, YANG J, HE Y C, et al. Monarch butterfly optimization algorithm with differential evolution for the discounted {0-1} knapsack problem[J]. Acta Electronica Sinica, 2018, 46(6):1343-1350.)
[11] FENG Y H, WANG G G. Binary moth search algorithm for discounted {0-1} knapsack problem[J]. IEEE Access, 2018, 6:10708-10719.
[12] 刘雪静,贺毅朝,路凤佳,等.基于Lévy飞行的差分乌鸦算法求解折扣{0-1背包问题[J].计算机应用,2018,38(2):433-442.(LIU X J, HE Y C, LU F J, et al. Differential crow search algorithm based on Lévy flight for solving discount {0-1} knapsack problem[J]. Journal of Computer Applications, 2018, 38(2):433-442.)
[13] 刘雪静,贺毅朝,路凤佳,等.基于差分演化策略的混沌乌鸦算法求解折扣{0-1}背包问题[J].计算机应用,2018,38(1):137-145.(LIU X J, HE Y C, LU F J, et al. Chaotic crow search algorithm based on differential evolution strategy for solving discount {0-1} knapsack problem[J]. Journal of Computer Applications, 2018, 38(1):137-145.)
[14] 吴聪聪,贺毅朝,陈嶷瑛,等.变异蝙蝠算法求解折扣{0-1}背包问题[J].计算机应用,2017,37(5):1292-1299.(WU C C, HE Y C, CHEN Y Y, et al. Mutated bat algorithm for solving discounted {0-1} knapsack problem[J]. Journal of Computer Applications, 2017, 37(5):1292-1299.)
[15] 刘雪静,贺毅朝,吴聪聪,等.基于细菌觅食算法求解折扣{0-1}背包问题的研究[J].计算机工程与应用,2018,54(2):155-162.(LIU X J, HE Y C, WU C C, et al. Research on bacterial foraging optimization algorithm for discounted {0-1} knapsack problem[J]. Computer Engineering and Applications, 2018, 54(2):155-162.)
[16] BALAS E, ZEMEL E. An algorithm for large zero-one knapsack problems[J]. Operations Research, 1980, 28(5):1130-1154.
[17] PISINGER D. Core problems in knapsack algorithms[J]. Operations Research, 1999, 47(4):570-575.
[18] PISINGER D. An expanding-core algorithm for the exact 0-1 knapsack problem[J]. European Journal of Operational Research, 1995, 87(1):175-187.
[19] BELLMAN R. Dynamic programming[J]. Science, 1966, 153(3731):34-37.
[20] MARTELLO S, PISINGER D, TOTH P. Dynamic programming and strong bounds for the 0-1 knapsack problem[J]. Management Science, 1999, 45(3):414-424.
[21] KATHRIN K, WIECEK M M. Dynamic programming approaches to the multiple criteria knapsack problem[J]. Naval Research Logistics, 2015, 47(1):57-76.
[22] BALEV S, YANEV N, FREVILLE A, et al. A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem[J]. European Journal of Operational Research, 2008, 186(1):63-76.
[23] DYER M E, RIHA W O, WALKER J. A hybrid dynamic programming/branch-and-bound algorithm for the multiple-choice knapsack problem[J]. Journal of Computational and Applied Mathematics, 1995, 58(1):43-54.
[24] MARTELLO S, TOTH P. Knapsack problems:algorithms and computer implementations[J]. Journal of the Operational Research Society, 1991, 42(6):513-513.
[25] GAREY M R, JOHNSON D S, STOCKMEYER L. Some simplified NP-complete graph problems[J]. Theoretical Computer Science, 1976, 1(3):237-267.
[26] KELLERER H, PFERSCHY U, PISINGER D. Knapsack Problems[M]. Berlin:Springer, 2004:1-17. |