[1] YUE H J, YANG J Y, SUN X Y, et al. Contrast enhancement based on intrinsic image decomposition[J]. IEEE Transactions on Image Processing, 2017, 26(8):3981-3994. [2] LEE C, LEE C, KIM C S. Contrast enhancement based on layered difference representation of 2D histograms[J]. IEEE Transactions on Image Processing, 2013, 22(12):5372-5384. [3] CELIK T, TJAHJADI T. Contextual and variational contrast enhancement[J]. IEEE Transactions on Image Processing, 2011, 20(12):3431-3441. [4] GU K, ZHAI G T, LIN W S, et al. The analysis of image contrast:from quality assessment to automatic enhancement[J]. IEEE Transactions on Cybernetics, 2016, 46(1):284-297. [5] JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround Retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3):451-462. [6] 刘茜,卢心红,李象霖.基于多尺度Retinex的自适应图像增强方法[J].计算机应用,2009,29(8):2077-2079.(LIU Q, LU X H, LI X L. Adaptive image enhancement method based on multi-scale Retinex algorithm[J].Journal of Computer Applications, 2009, 29(8):2077-2079.) [7] WANG S H, ZHENG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9):3538-3548. [8] 王小明,黄昶,李全彬,等.改进的多尺度Retinex图像增强算法[J].计算机应用,2010,30(8):2091-2093.(WANG X M, HUANG C, LI Q B, et al. Improved multi-scale Retinex image enhancement algorithm[J]. Journal of Computer Applications, 2010, 30(8):2091-2093.) [9] FU X Y, LIAO Y H, ZENG D L, et al. A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation[J]. IEEE Transactions on Image Processing, 2015, 24(12):4965-4977. [10] WANG Y F, WANG H Y, YIN C L, et al. Biologically inspired image enhancement based on Retinex[J]. Neurocomputing, 2016, 177(C):373-384. [11] GUO X J, LI Y, LING H B. LIME:low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2):982-993. [12] FU X Y, ZENG D L, HUANG Y, et al. A weighted variational model for simultaneous reflectance and illumination estimation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:2782-2790. [13] KIMMEL R, ELAD M, SHAKED D, et al. A variational framework for Retinex[J]. International Journal of Computer Vision, 2003, 52(1):7-23. [14] GOLDSTEIN T, OSHER S. The split bregman method for L1-regularized problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(2):323-343. [15] DENG G. A generalized unsharp masking algorithm[J]. IEEE Transactions on Image Processing, 2011, 20(5):1249-1261. [16] ANCUTI C O, ANCUTI C. Single image dehazing by multi-scale fusion[J]. IEEE Transactions on Image Processing, 2013, 22(8):3271- 3282. [17] ANCUTI C O, ANCUTI C, de VLEESCHOUWER C, et al. Single-scale fusion:an effective approach to merging images[J]. IEEE Transactions on Image Processing, 2017, 26(1):65-78. [18] ANCUTI C, ANCUTI C O, HABER T, et al. Enhancing underwater images and videos by fusion[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2012:81-88. [19] ANCUTI C O, ANCUTI C, BEKAERT P. Enhancing by saliency-guided decolorization[C]//CVPR 2011:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2011:257-264. [20] CHOI L K, YOU J, BOVIK A C. Referenceless prediction of perceptual fog density and perceptual image defogging[J]. IEEE Transactions on Image Processing, 2015, 24(11):3888-3901. [21] JOBSON D J, RAHMAN Z, WOODELL G A. A multiscale Retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7):965-976. [22] XU H T, ZHAI G Z, WU X L, et al. Generalized equalization model for image enhancement[J]. IEEE Transactions on Multimedia, 2014, 16(1):68-82. [23] SHAN Q, JIA J Y, BROWN M S. Globally optimized linear windowed tone mapping[J]. IEEE transactions on Visualization and Computer Graphics, 2010, 16(4):663-675. [24] YING Z Q, LI G, REN Y R, et al. A new image contrast enhancement algorithm using exposure fusion framework[C]//CAIP 2017:Proceedings of the 2017 International Conference on Computer Analysis of Images and Patterns, LNCS 10425. Cham:Springer, 2017:36-46. [25] LI M D, LIU J Y, YANG W H, et al. Structure-revealing low-light image enhancement via robust Retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6):2828-2841. [26] MA K, ZENG K, WANG Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2015, 24(11):3345- 3356. [27] SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2):430-444. [28] LI Z G, ZHENG J H, ZHU Z J, et al. Weighted guided image filtering[J]. IEEE Transactions on Image Processing, 2015, 24(1):120-129. [29] AYDIN T O, MANTIUK R, MYSZKOWSKI K, et al. Dynamic range independent image quality assessment[C]//SIGGRAPH 2008:Proceedings of the 2008 ACM SIGGRAPH. New York:ACM, 2008:Article No. 69. [30] WANG Q H, FU X Y, ZHANG X P, et al. A fusion-based method for single backlit image enhancement[C]//ICIP 2016:Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway, NJ:IEEE, 2016:4077-4081. [31] YING Z Q, LI G, REN Y R, et al. A new low-light image enhancement algorithm using camera response model[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision Workshop. Piscataway, NJ:IEEE, 2017:3015-3022. [32] 王晨,汤心溢,高思莉.基于人眼视觉的红外图像增强算法研究[J].激光与红外,2017,47(1):114-118.(WANG C, TANG X Y, GAO S L. Infrared image enhancement algorithm based on human vision[J]. Laser and Infrared, 2017, 47(1):114-118.) |