1 孙培芪,卜俊洲,陶庭叶,等.基于特征点法向量的点云配准算法[J].测绘通报,2019(8):48-53. SUNP Q, BUJ Z, TAOT Y, et al. Point cloud registration algorithm based on feature point method vector [J]. Bulletin of Surveying and Mapping, 2019(8):48-53. 2 WANGZ, BRENNERC. Point based registration of terrestrial laser data using intensity and geometry features [J]. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37(Pt B5): 583-589. 3 盛庆红,陈姝文,柳建锋,等.基于Plücker直线的LiDAR点云配准法[J].测绘学报,2016,45(1):58-64. SHENGQ H, CHENS W, LIUJ F, et al. LiDAR point cloud registration based on Plücker line [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1): 58-64. 4 杨帆,唐伟智,吴昊.改进迭代最近点算法的点云自动精配准[J].遥感信息,2018,33(2):40-45. YANGF, TANGW Z, WUH. Automatic registration of point clouds based on improved iterative closet point algorithm [J]. Remote Sensing Information, 2018, 33(2): 40-45. 5 周春艳,李勇,邹峥嵘.三维点云ICP算法改进研究[J].计算机技术与发展,2011,21(8):75-77,81. ZHOUC Y, LIY, ZOUZ R. Three-dimensional cloud ICP algorithm improvement [J]. Computer Technology and Development, 2011, 21(8): 75-77, 81. 6 DUS, ZHENGN, YINGS, et al. Affine iterative closest point algorithm for point set registration [J]. Pattern Recognition Letters, 2010, 31(9): 791-799. 7 沈长江,吴云东,蔡国榕,等.基于四元约束的多视角建筑物Lidar点云配准方法[J].集美大学学报(自然科学版),2019,24(5):393-400. SHENC J, WUY D, CAIG R, et al. Multiple views Lidar point cloud registration for buildings based on quaternion constraint [J]. Journal of Jimei University (Natural Science Edition), 2019, 24(5): 393-400. 8 赵明富,黄铮,宋涛,等.融合采样一致性和迭代最近点算法的点云配准方法[J].激光杂志,2019,40(10):45-50. ZHAOM F, HUANGZ, SONGT, et al. Point cloud registration method based on sample consensus initial alignment and iterative closest point algorithm [J]. Laser Journal, 2019, 40(10): 45-50. 9 GRESSINA, MALLETC, DEMANTKéJ, et al. Towards 3D LiDAR point cloud registration improvement using optimal neighborhood knowledge [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79: 240-251. 10 AIGERD, MITRAN J, COHEN-ORD. 4-points congruent sets for robust pairwise surface registration [J]. ACM Transactions on Graphics, 2008, 27(3): 1-10. 11 J-JJAW, T-YCHUANG. Registration of ground-based LiDAR point clouds by means of 3D line features [J]. Journal of the Chinese Institute of Engineers, 2008, 31(6): 1031-1045. 12 王永波,杨化超,刘燕华,等.线状特征约束下基于四元数描述的LiDAR点云配准方法[J].武汉大学学报(信息科学版),2013,38(9):1057-1062. WANGY B, YANGH C, LIUY H, et al. Linear-feature-constrained registration of LiDAR point cloud via quaternion [J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1057-1062. 13 周春霖,朱合华,李晓军.随机抽样一致性平面拟合及其应用研究[J].计算机工程与应用,2011,47(7):177-179,182. ZHOUC L, ZHUH H, LIX J. Research and application of robust plane fitting algorithm with RANSAC [J]. Computer Engineering and Applications, 2011, 47(7):177-179, 182. 14 叶玲洁,颜远青.基于PCA算法的机载LiDAR点云平面分割算法研究[J].城市勘测,2018(1):41-44,51. YEL J, YANY Q. Research on plane segmentation algorithm based on PCA algorithm from airborne LiDAR point cloud data [J]. Urban Geotechnical Investigation and Surveying, 2018(1): 41-44, 51. 15 陈凯,张达,张元生.采空区三维激光扫描点云数据处理方法[J].光学学报,2013,33(8):117-122. CHENK, ZHANGD, ZHANGY S. Point cloud data processing method of cavity 3D laser scanner [J]. Acta Optica Sinica, 2013, 33(8): 117-122. 16 李宝,程志全,党岗,等.三维点云法向量估计综述[J].计算机工程与应用,2010,46(23):1-7. LIB, CHENGZ Q, DANGG, et al. Survey on normal estimation for 3D point clouds [J]. Computer Engineering and Applications, 2010, 46(23):1-7. 17 EDELSBRUNNERH, KIRKPATRICKD G, SEIDELR. On the shape of a set of points in the plane [J]. IEEE Transactions on Information Theory, 1983, 29(4): 551-559. 18 GIOI R GVON, JAKUBOWICZJ, MORELJ M, et al. LSD: a fast line segment detector with a false detection control [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 722-732. 19 赵双明,郭秋燕,罗研,等.基于四元数的三维空间相似变换解算[J].武汉大学学报(信息科学版),2009,34(10):1214-1217. ZHAOS M, GUOQ Y, LUOY, et al. Quaternion-based 3D similarity transformation algorithm [J]. Geomatics and Information Science of Wuhan University, 2009, 34(10): 1214-1217. |