Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (7): 2184-2191.DOI: 10.11772/j.issn.1001-9081.2021071319
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Tingwei QIN1,2, Pengcheng ZHAO1,2, Pinle QIN1,2(), Jianchao ZENG1,2, Rui CHAI1,2, Yongqi HUANG1,2
Received:
2021-07-22
Revised:
2021-10-13
Accepted:
2021-10-18
Online:
2021-11-01
Published:
2022-07-10
Contact:
Pinle QIN
About author:
QIN Tingwei, born in 1997, M. S. candidate. His research interests include point cloud registration, machine learning.Supported by:
秦庭威1,2, 赵鹏程1,2, 秦品乐1,2(), 曾建朝1,2, 柴锐1,2, 黄永琦1,2
通讯作者:
秦品乐
作者简介:
秦庭威(1997—),男,陕西渭南人,硕士研究生,CCF会员,主要研究方向:点云配准、机器学习基金资助:
CLC Number:
Tingwei QIN, Pengcheng ZHAO, Pinle QIN, Jianchao ZENG, Rui CHAI, Yongqi HUANG. Point cloud registration algorithm based on residual attention mechanism[J]. Journal of Computer Applications, 2022, 42(7): 2184-2191.
秦庭威, 赵鹏程, 秦品乐, 曾建朝, 柴锐, 黄永琦. 基于残差注意力机制的点云配准算法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2184-2191.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071319
算法 | 旋转 | 平移 | ||||
---|---|---|---|---|---|---|
均方误差 | 均方根误差 | 绝对平均误差 | 均方误差 | 均方根误差 | 绝对平均误差 | |
ICP | 911.478 455 | 30.190 701 | 26.454 945 | 0.096 454 | 0.310 570 | 0.279 845 |
Go-ICP | 158.565 457 | 12.592 278 | 3.296 845 | 0.000 892 | 0.029 866 | 0.008 194 |
PointNetLK | 240.456 441 | 15.506 657 | 4.847 512 | 0.000 539 | 0.023 216 | 0.006 258 |
本文算法 | 61.045283 | 7.813148 | 2.854556 | 0.000283 | 0.016822 | 0.004146 |
Tab. 1 Training and testing on all data of ModelNet40
算法 | 旋转 | 平移 | ||||
---|---|---|---|---|---|---|
均方误差 | 均方根误差 | 绝对平均误差 | 均方误差 | 均方根误差 | 绝对平均误差 | |
ICP | 911.478 455 | 30.190 701 | 26.454 945 | 0.096 454 | 0.310 570 | 0.279 845 |
Go-ICP | 158.565 457 | 12.592 278 | 3.296 845 | 0.000 892 | 0.029 866 | 0.008 194 |
PointNetLK | 240.456 441 | 15.506 657 | 4.847 512 | 0.000 539 | 0.023 216 | 0.006 258 |
本文算法 | 61.045283 | 7.813148 | 2.854556 | 0.000283 | 0.016822 | 0.004146 |
算法 | 旋转 | 平移 | ||||
---|---|---|---|---|---|---|
均方误差 | 均方根误差 | 绝对平均误差 | 均方误差 | 均方根误差 | 绝对平均误差 | |
ICP | 901.144 123 | 30.019 062 | 24.565 215 | 0.092 549 | 0.304 218 | 0.281 916 |
Go-ICP | 194.451 413 | 13.944 583 | 3.245 444 | 0.000 512 | 0.0226 27 | 0.007 219 |
PointNetLK | 314.554 104 | 17.735 671 | 6.345 844 | 0.000 849 | 0.029 138 | 0.008 106 |
本文算法 | 84.145566 | 9.173089 | 3.155154 | 0.000454 | 0.021307 | 0.005651 |
Tab. 2 Testing on unknown object class data of ModelNet40
算法 | 旋转 | 平移 | ||||
---|---|---|---|---|---|---|
均方误差 | 均方根误差 | 绝对平均误差 | 均方误差 | 均方根误差 | 绝对平均误差 | |
ICP | 901.144 123 | 30.019 062 | 24.565 215 | 0.092 549 | 0.304 218 | 0.281 916 |
Go-ICP | 194.451 413 | 13.944 583 | 3.245 444 | 0.000 512 | 0.0226 27 | 0.007 219 |
PointNetLK | 314.554 104 | 17.735 671 | 6.345 844 | 0.000 849 | 0.029 138 | 0.008 106 |
本文算法 | 84.145566 | 9.173089 | 3.155154 | 0.000454 | 0.021307 | 0.005651 |
算法 | 旋转 | 平移 | ||||
---|---|---|---|---|---|---|
均方误差 | 均方根误差 | 绝对平均误差 | 均方误差 | 均方根误差 | 绝对平均误差 | |
ICP | 896.454 135 | 29.940 843 | 24.454 120 | 0.088 652 | 0.297 745 | 0.261 245 |
Go-ICP | 132.451 575 | 11.508 761 | 2.652 314 | 0.000 569 | 0.023 853 | 0.004 896 |
PointNetLK | 262.451 567 | 16.200 357 | 4.784 552 | 0.000 498 | 0.022 316 | 0.006 205 |
本文算法 | 70.512 636 | 8.397 180 | 2.559 214 | 0.000 278 | 0.016 673 | 0.004 526 |
Tab. 3 Testing on data with Gaussian noise added of ModelNet40
算法 | 旋转 | 平移 | ||||
---|---|---|---|---|---|---|
均方误差 | 均方根误差 | 绝对平均误差 | 均方误差 | 均方根误差 | 绝对平均误差 | |
ICP | 896.454 135 | 29.940 843 | 24.454 120 | 0.088 652 | 0.297 745 | 0.261 245 |
Go-ICP | 132.451 575 | 11.508 761 | 2.652 314 | 0.000 569 | 0.023 853 | 0.004 896 |
PointNetLK | 262.451 567 | 16.200 357 | 4.784 552 | 0.000 498 | 0.022 316 | 0.006 205 |
本文算法 | 70.512 636 | 8.397 180 | 2.559 214 | 0.000 278 | 0.016 673 | 0.004 526 |
算法 | 旋转 | 平移 | ||||
---|---|---|---|---|---|---|
均方误差 | 均方根误差 | 绝对平均误差 | 均方误差 | 均方根误差 | 绝对平均误差 | |
PointNetLK | 240.456 441 | 15.506 657 | 4.847 512 | 0.000 539 | 0.023 216 | 0.006 258 |
APointNetLK | 178.165 455 | 13.347 863 | 3.845 162 | 0.000 386 | 0.019 647 | 0.004 948 |
DGCNNLK | 84.159 554 | 9.173 851 | 3.245 457 | 0.000 326 | 0.018 055 | 0.004 256 |
本文算法 | 61.045283 | 7.813148 | 2.854556 | 0.000283 | 0.016822 | 0.004146 |
Tab. 4 Comparison of feature learning among APointNet, DGCNN and ADGCNN
算法 | 旋转 | 平移 | ||||
---|---|---|---|---|---|---|
均方误差 | 均方根误差 | 绝对平均误差 | 均方误差 | 均方根误差 | 绝对平均误差 | |
PointNetLK | 240.456 441 | 15.506 657 | 4.847 512 | 0.000 539 | 0.023 216 | 0.006 258 |
APointNetLK | 178.165 455 | 13.347 863 | 3.845 162 | 0.000 386 | 0.019 647 | 0.004 948 |
DGCNNLK | 84.159 554 | 9.173 851 | 3.245 457 | 0.000 326 | 0.018 055 | 0.004 256 |
本文算法 | 61.045283 | 7.813148 | 2.854556 | 0.000283 | 0.016822 | 0.004146 |
算法 | 误差≤ 0.01的点对个数 | 误差>0.01的点对个数 | 准确率/% |
---|---|---|---|
ICP | 4 824 | 2 066 | 70.01 |
Go-ICP | 5 128 | 1 762 | 74.43 |
PointNetLK | 5 396 | 1 494 | 78.32 |
本文算法 | 5 876 | 1 014 | 85.28 |
Tab.5 Registration results of human body point cloud models before and after radiotherapy
算法 | 误差≤ 0.01的点对个数 | 误差>0.01的点对个数 | 准确率/% |
---|---|---|---|
ICP | 4 824 | 2 066 | 70.01 |
Go-ICP | 5 128 | 1 762 | 74.43 |
PointNetLK | 5 396 | 1 494 | 78.32 |
本文算法 | 5 876 | 1 014 | 85.28 |
算法 | 头(1 045对)准确率 | 胸(549对)准确率 | 腹(536对)准确率 | 胳膊(1 214对)准确率 | 腿(694对)准确率 |
---|---|---|---|---|---|
ICP | 71.29 | 85.79 | 75.93 | 82.37 | 63.54 |
Go-ICP | 75.41 | 90.35 | 81.72 | 88.63 | 62.97 |
PointNetLK | 80.77 | 93.62 | 85.26 | 89.95 | 70.61 |
本文算法 | 84.98 | 95.08 | 86.57 | 92.34 | 71.33 |
Tab. 6 Registration results of human body parts before and after radiotherapy
算法 | 头(1 045对)准确率 | 胸(549对)准确率 | 腹(536对)准确率 | 胳膊(1 214对)准确率 | 腿(694对)准确率 |
---|---|---|---|---|---|
ICP | 71.29 | 85.79 | 75.93 | 82.37 | 63.54 |
Go-ICP | 75.41 | 90.35 | 81.72 | 88.63 | 62.97 |
PointNetLK | 80.77 | 93.62 | 85.26 | 89.95 | 70.61 |
本文算法 | 84.98 | 95.08 | 86.57 | 92.34 | 71.33 |
1 | BESL P J, McKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. 10.1109/34.121791 |
2 | RUSINKIEWICZ S, LEVOY M. Efficient variants of the ICP algorithm [C]// Proceedings of the 3rd International Conference on 3D Digital Imaging and Modeling. Piscataway: IEEE, 2001: 145-152. |
3 | SEGAL A, HAEHNEL D, THRUN S. Generalized-ICP[EB/OL]. [2021-05-13]. . 10.15607/rss.2009.v.021 |
4 | BOUAZIZ S, TAGLIASACCHI A, PAULY M. Sparse iterative closest point[J]. Computer Graphics Forum, 2013, 32(5): 113-123. 10.1111/cgf.12178 |
5 | POMERLEAU F, COLAS F, SIEGWART R. A review of point cloud registration algorithms for mobile robotics[J]. Foundations and Trends in Robotics, 2015, 4(1): 1-104. 10.1561/2300000035 |
6 | QI C R, SU H, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. 10.1109/cvpr.2017.16 |
7 | WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): No.146. 10.1145/3326362 |
8 | AOKI Y, GOFORTH H, SRIVATSAN R A, et al. PointNetLK: robust & efficient point cloud registration using PointNet[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7154-7165. 10.1109/cvpr.2019.00733 |
9 | LUCAS D D, KANADE T. An iterative image registration technique with an application to stereo vision[C]// Proceedings of the 1981 International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 1981: 674-679. |
10 | SARODE V, LI X Q, GOFORTH H, et al. PCRNet: point cloud registration network using pointnet encoding[EB/OL]. (2018-11-04) [2021-05-13].. |
11 | WANG Y, SOLOMON J. Deep closest point: learning representations for point cloud registration[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3522-3531. 10.1109/iccv.2019.00362 |
12 | WANG Y, SOLOMON J. PRNet: self-supervised learning for partial-to-partial registration[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems. [2021-05-13].. |
13 | YEW Z J, LEE G H. RPM-Net: robust point matching using learned features[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11821-11830. 10.1109/cvpr42600.2020.01184 |
14 | LOPER M, MAHMOOD N, ROMERO J, et al. SMPL: a skinned multi-person linear model[J]. ACM Transactions on Graphics, 2015, 34(6): No.248. 10.1145/2816795.2818013 |
15 | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 5105-5114. |
16 | JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 2017-2025. 10.1007/s11263-015-0823-z |
17 | ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2921-2929. 10.1109/cvpr.2016.319 |
18 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
19 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
20 | 林钦壮,何昭水. 基于注意力机制的高效点云识别方法[J]. 计算机与现代化, 2020(8):51-55. 10.3969/j.issn.1006-2475.2020.08.008 |
LIN Q Z, HE Z S. Method of efficient point cloud recognition based on attention mechanism[J]. Computer and Modernization, 2020(8):51-55. 10.3969/j.issn.1006-2475.2020.08.008 | |
21 | ZHOU Q Y, PARK J, KOLTUN V. Open 3D: modern library fora 3D data processing[EB/OL]. (2018-01-30) [2021-05-13].. |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[3] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[4] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[5] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[6] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[7] | Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression [J]. Journal of Computer Applications, 2024, 44(8): 2372-2380. |
[8] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[9] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[10] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[11] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[12] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[14] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[15] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||