[1] 张玉璞, 杨旗, 张旗. 基于计算机视觉的图像多尺度识别方法[J]. 计算机应用, 2015, 35(2):502-505, 549.(ZHANG Y P, YANG Q,ZHANG Q. Image multi-scale recognition method based oncomputer vision[J]. Journal of Computer Applications,2015, 35(2):502-505,549.) [2] 郭川磊, 何嘉. 基于转置卷积操作改进的单阶段多边框目标检测方法[J]. 计算机应用, 2018, 38(10):2833-2838.(GUO C L, HENG J. Improved single shot multibox detector based on the transposed convolution[J]. Journal of Computer Applications, 2018,38(10):2833-2838.) [3] CAO Z,HIDALGO G,SIMON T,et al. OpenPose:realtime multiperson 2D pose estimation using part affinity fields[EB/OL]. https://openaccess.thecvf.com/content_cvpr_2017/papers/Cao_Realtime_Multi-Person_2D_CVPR_2017_paper.pdf. [4] 宋小娜, 芮挺, 王新晴. 结合语义边界信息的道路环境语义分割方法[J]. 计算机应用, 2019, 39(9):2505-2510.(SONG X N, RUI T, WANG X Q. Semantic segmentation method of road environmentcombined semantic boundary information[J]. Journal of Computer Applications,2019,39(9):2505-2510.) [5] REDMON J,DIVVALA S,GIRSHICK R,et al. You Only Look Once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:779-788. [6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:1440-1448. [7] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards realtime object detection with region proposalnetworks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [8] FU C Y,LIU W,RANGA A,et al. DSSD:deconvolutional single shot detector[EB/OL].[2019-10-20]. https://arxiv.org/pdf/1701.06659.pdf. [9] LIU W,ANGUELOV D,ERHAN D,et al. SSD:Single Shot MultiBox Detector[C]//Proceedings of the 201614th European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:21-37. [10] LEE K,CHOI J,JEONG J,et al. Residual features and unified predictionnetwork for single stage detection[EB/OL].[2019-11-20]. https://arxiv.org/pdf/1707.05031v3.pdf. [11] LI Z,PENG C,YU G,et al. Light-head R-CNN:in defense of two-stage object detector[EB/OL].[2019-11-20]. https://arxiv.org/pdf/1711.07264.pdf [12] CAI Z,VASCONCELOS N. Cascade R-CNN:delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:6154-6162. [13] LI Y,CHEN Y,WANG N,et al. Scale-aware tridentnetworks for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:6053-6062. [14] TAN M,PANG R,LE Q V,et al. EfficientDet:scalable and efficient object detection[EB/OL].[2019-11-20]. https://arxiv.org/pdf/1911.09070.pdf. [15] ZHOU X,WANG D,KRÄHENBÜHL P,et al. Objects as points[EB/OL].[2019-11-21]. https://arxiv.org/pdf/1904.07850.pdf. [16] LAW H, DENG J. CornerNet:detecting objects as paired keypoints[C]//Proceedings of the 201815th European Conference on Computer Vision,LNCS 11218. Cham:Springer, 2018:765-781. [17] DUAN K,BAI S,XIE L,et al. CenterNet:keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:6568-6577. [18] ZHU C,HE Y,SAVVIDES M,et al. Feature selective anchorfree module for single-shot object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition。Piscataway:IEEE,2019:840-849. [19] TIAN Z,SHEN C,CHEN H,et al. FCOS:fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:9626-9635. [20] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:580-587. [21] REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6517-6525. [22] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2019-11-21]. https://arxiv.org/pdf/1804.02767.pdf. [23] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [24] YU F,WANG D,SHELHAMER E,et al. Deep layer aggregation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:2403-2412. [25] NEWELL A, YANG K, DENG J, et al. Stacked hourglassnetworks for human pose estimation[C]//Proceedings of the 201614th European Conference on Computer Vision,LNCS 9912. Cham:Springer,2016:483-499. [26] IOFFE S,SZEGEDY C. Batch normalization:accelerating deepnetwork training by reducing internal covariate shift[EB/OL].[2019-11-20]. https://arxiv.org/pdf/1502.03167v3.pdf. [27] DAI J, QI H, XIONG Y, et al. Deformable convolutionalnetworks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:764-773. [28] ZHU X,HU H,LIN S,et al. Deformable ConvNets V2:more deformable,better results[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:9308-9316. [29] HE K,ZHANG X,REN S,et al. Spatial pyramid pooling in deep convolutionalnetworks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015, 37(9):1904-1916. [30] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramidnetworks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:936-944. [31] BODLA N,SINGH B,CHELLAPPA R,et al. Soft-NMS-improving object detection with one line of code[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:5562-5570. [32] EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al. The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision,2010,88(2):303-338. [33] LIN T Y,MAIRE M,BELONGIE S,et al. Microsoft COCO:common objects in context[C]//Proceedings of the 201413th European Conference on Computer Vision,LNCS 8693. Cham:Springer,2014:740-755. [34] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2999-3007. [35] DAI J,LI Y,HE K,et al. R-FCN:object detection via regionbased fully convolutionalnetworks[EB/OL].[2019-11-20]. https://arxiv.org/pdf/1605.06409v2.pdf. |