[1] 褚娜,马利庄,王彦. 聚类趋势问题的研究综述[J]. 计算机应用研究, 2009, 26(3):801-803, 822. (CHU N, MA L Z, WANG Y. Research for clustering tendency[J]. Application Research of Computers, 2009, 26(3):801-803, 822.) [2] HOPKINS B, SKELLAM J G. A new method for determining the type of distribution of plant individuals[J]. Annals of Botany, 1954, 18(2):213-227. [3] PANAYIRCI E, DUBES R C. Extension of the Cox-Lewis method for testing multidimensional data[J]. Pattern Recognition, 1988, 7(1):1-8. [4] BESAG J E, GLEAVES J T. On the detection of spatial pattern in plant communities[J]. Bulletin of the International Statistical Institute, 1973, 45:153-158. [5] 高新波,裴继红,谢维信. 基于统计检验指导的聚类分析方法[J]. 电子科学学刊, 2000, 22(1):6-12. (GAO X B, PEI J H, XIE W X. A novel cluster analysis method supervised by statistical tests[J]. Journal of Electronics, 2000, 22(1):6-12.) [6] 曾广周. 聚类趋势的Monte-Carlo检验[J]. 计算机应用与软件, 1989, 6(1):35-40. (ZENG G Z. Monte-Carlo test of clustering tendency[J]. Computer Applications and Software, 1989, 6(1):35-40.) [7] SILVA H B, BRITO P, DA COSTA J P. A partitional clustering algorithm validated by a clustering tendency index based on graph theory[J]. Pattern Recognition, 2005, 39(5):776-788. [8] BEZDEK J C, HATHAWAY R J. VAT:a tool for visual assessment of (cluster) tendency[C]//Proceedings of the 2002 International Joint Conference on Neural Networks. Piscataway:IEEE, 2002:2225-2230. [9] HATHAWAY R J, BEZDEK J C, HUBAND J M. Scalable visual assessment of cluster tendency for large data sets[J]. Pattern Recognition, 2006, 39(7):1315-1324. [10] HUBAND J M, BEZDEK J C, HATHAWAY R J. bigVAT:visual assessment of cluster tendency for large datasets[J]. Pattern Recognition, 2005, 38(11):1875-1886. [11] WANG L, GENG X, BEZDEK J, et a1. SpecVAT:enhanced visual cluster analysis[C]//Proceedings of the 8th IEEE International Conference on Data Mining. Piscataway:IEEE, 2008:638-647. [12] REDDY B E, PRASAD K R. Improving the performance of visualized clustering method[J]. International Journal of System Assurance Engineering and Management, 2016, 7(S1):102-111. [13] 赖家文,彭显刚,王洪森,等. 霍普金斯统计在短期负荷预测中的应用探讨[J]. 广东电力, 2013, 26(8):89-93, 98. (LAI J W, PENG X G, WANG H S, et a1. Discussion on application of Hopkins statistics in short-term load prediction[J]. Guangdong Electric Power, 2013, 26(8):89-93, 98.) [14] 李晔,陈奕延,张淑芬. 基于密度峰值的混合型数据聚类算法设计[J].计算机应用, 2018, 38(2):483-490, 496. (LI Y, CHEN Y Y, ZHANG S F. Design of mixed data clustering algorithm based on density peak[J]. Journal of Computer Applications, 2018, 38(2):483-490, 496.) [15] 孙谦,姚建刚,李欣然,等. 基于聚类趋势分析与逐步回归的电铁牵引负载负序源模型研究[J]. 中国电机工程学报, 2012, 32(34):120-128. (SUN Q, YAO J G, LI X R, et a1. Study on negative sequence source model of electrified railway traction load based on clustering tendency analysis and stepwise regression[J]. Proceedings of the CSEE, 2012, 32(34):120-128.) [16] ESTER M, KRIEGEL H P, SANDER J, et a1. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Palo Alto, CA:AAAI Press, 1996:226-231. [17] 毛睿,张贺,陆敏华,等. 一种基于密度的增量聚类数据挖掘方法及系统:CN201610055222.2[P]. 2016-07-06. (MAO R, ZHANG H, LU M H, et a1. A density-based incremental clustering data mining method and system:CN201610055222.2[P]. 2016-07-06.) [18] 田路强.基于DBSCAN的分布式聚类及增量聚类的研究与应用[D].北京:北京工业大学,2016:29-34. (TIAN L Q. Research and application on distributed clustering and incremental clustering based on DBSCAN[D]. Beijing:Beijing University of Technology, 2016:29-34.) [19] 任群. 基于增量聚类的协流识别系统研究[J]. 西安文理学院学报(自然科学版), 2018, 21(1):63-67. (REN Q. Research on the co-flow recognition system based on incremental clustering[J]. Journal of Xi'an University (Natural Science Edition), 2018, 21(1):63-67.) [20] JUNIOR M, OLIVIERI B, ENDLER M. DG2CEP:a near real-time on-line algorithm for detecting spatial clusters large data streams through complex event processing[J]. Journal of Internet Services and Applications, 2019, 10(1):No.8. [21] 朱迪,陈丹伟. 基于密度聚类和随机森林的移动应用识别技术[J].计算机工程与应用, 2020, 56(4):63-68. (ZHU D, CHEN D W. Technology of mobile application identification based on density-based clustering and random forest[J]. Computer Engineering and Applications, 2020, 56(4):63-68.) [22] 高新波. 模糊聚类分析及其应用[M]. 西安:西安电子科技大学出版社, 2004:134-136. (GAO X B. Fuzzy Clustering Analysis and its Applications[M]. Xi'an:Xidian University Press, 2004:134-136.) [23] 王光,林国宇. 改进的自适应参数DBSCAN聚类算法[J/OL]. 计算机工程与应用.[2020-01-20]. http://kns.cnki.net/kcms/detail/11.2127.TP.20191230.1437.008.html. (WANG G, LIN G Y. Improved adaptive parameter DBSCAN clustering algorithm[J/OL]. Computer Engineering and Applications.[2020-01-20]. http://kns.cnki.net/kcms/detail/11.2127.TP.20191230.1437.008.html.) |