[1] 郑宇. 城市计算概述[J]. 武汉大学学报(信息科学版), 2015, 40(1):1-13. (ZHENG Y. Introduction to urban computing[J]. Geomatics and Information Science of Wuhan University,2015,40(1):1-13.) [2] 郑宇. 城市计算:用大数据和AI打造未来城市[J]. 卫星与网络, 2018(12):32-37.(ZHENG Y. Urban computing:using big data and AI to build future cities[J]. Satellite and Network,2018(12):32-37.) [3] 张建晋, 王韫博, 龙明盛, 等. 面向季节性时空数据的预测式循环网络及其在城市计算中的应用[J]. 计算机学报, 2020, 43(2):286-302.(ZHANG J J,WANG Y B,LONG M S,et al. Predictive recurrent network for seasonal spatio-temporal data and its application in urban computing[J]. Chinese Journal of Computers, 2020,43(2):286-302.) [4] LI D,DENG L,LEE M,et al. IoT data feature extraction and intrusion detection system for smart cities based on deep migration learning[J]. International Journal of Information Management, 2019,49:533-545. [5] MALCHAIRE L. Ergonomics of the thermal environment-analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria:ISO 7730:2005[S]. Geneva:ISO,2005-11. [6] 张炳力, 薛铁龙, 胡忠文. 基于PMV-PPD与空气龄的轿车乘员舱内热舒适性分析与改进[J]. 汽车工程, 2015, 37(8):951-958. (ZHANG B L,XUE T L,HU Z W. Analysis and improvement of the thermal comfort in passenger compartment of a car based on PMV-PPD and air age[J]. Automotive Engineering,2015,37(8):951-958.) [7] 王瑞, 呼慧敏, 赵朝义, 等. 典型住宅空调房间环境热舒适性研究[J]. 人类工效学, 2018, 24(6):11-16.(WANG R,HU H M, ZHAO C Y,et al. Study on thermal comfort of indoor environment about typical residential air conditioning room[J]. Chinese Journal of Ergonomics,2018,24(6):11-16.) [8] WANG Z. A field study of the thermal comfort in residential buildings in Harbin[J]. Building and Environment,2006,41(8):1034-1039. [9] YAO R, LIU J, LI B. Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms[J]. Applied Energy,2010,87(3):1015-1022. [10] YATIM S R M,ZAIN M A M M M,DARUS F M,et al. Thermal comfort in air-conditioned learning environment[C]//Proceedings of the 3rd International Symposium and Exhibition in Sustainable Energy and Environment. Piscataway:IEEE,2011:194-197. [11] ALI S F,RAKSHIT D. Utilising passive design strategies for analysing thermal comfort levels inside an office room using PMVPPD models[M]//Solar Energy:Systems, Challenges, and Opportunities. Cham:Springer,2020:35-57. [12] POURSHAGHAGHY A,OMIDVARI M. Examination of thermal comfort in a hospital using PMV-PPD model[J]. Applied Ergonomics,2012,43(6):1089-1095. [13] ZHANG S,HE W,CHEN D,et al. Thermal comfort analysis based on PMV/PPD in cabins of manned submersibles[J]. Building and Environment,2019,148:668-676. [14] 朱槟. 基于机器学习的夏热冬暖地区商场热舒适性研究[D]. 广州:华南理工大学, 2018:7.(ZHU B. Research on thermal comfort of shopping malls in hot summer and warm winter areas based on machine learning[D]. Guangzhou:South China University of Technology,2018:7.) [15] LIANG J,DU R. Thermal comfort control based on neural network for HVAC application[C]//Proceedings of 2005 IEEE Conference on Control Applications. Piscataway:IEEE,2005:819-824. [16] SALAMONE F,BELUSSI L,CURRÒ C,et al. Integrated method for personal thermal comfort assessment and optimization through users' feedback,IoT and machine learning:a case study[J]. Sensors,2018,18(5):No. 1602. [17] WANG Z, WANG J, HE Y, et al. Dimension analysis of subjective thermal comfort metrics based on ASHRAE Global Thermal Comfort Database using machine learning[J]. Journal of Building Engineering,2019,29:No. 101120. [18] HOMOD R Z,SAHARI K S M,ALMURIB H A F,et al. RLF and TS fuzzy model identification of indoor thermal comfort based on PMV/PPD[J]. Building and Environment, 2012, 49:141-153. [19] WU Z,LI N,PENG J,et al. Using an ensemble machine learning methodology-Bagging to predict occupants' thermal comfort in buildings[J]. Energy and Buildings,2018,173:117-127. [20] CHAUDHURI T,SOH Y C,LI H,et al. Machine learning based prediction of thermal comfort in buildings of equatorial Singapore[C]//Proceedings of the 2017 IEEE International Conference on Smart Grid and Smart Cities. Piscataway:IEEE,2017:72-77. [21] LUO M,XIE J,YAN Y,et al. Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database Ⅱ[J]. Energy and Buildings,2020,210:No. 109776. [22] WAREY A,KAUSHIK S,KHALIGHI B,et al. Data-driven prediction of vehicle cabin thermal comfort:using machine learning and high-fidelity simulation results[J]. International Journal of Heat and Mass Transfer,2020,148:No. 119083. [23] ZHANG D,QU B,WANG C. Energy-saving evaluation and control optimization of an ASHP heating system based on indoor thermal comfort[J]. Solar Energy,2019,194:913-922. [24] YOUNG Y R,MOON H J. Performance based Thermal Comfort Control (PTCC) using deep reinforcement learning for space cooling[J]. Energy and Buildings,2019,203:No. 109420. [25] DELGAM N, SAJADI B, DELGAM S. Multi-objective optimization of building energy performance and indoor thermal comfort:a new method using Artificial Bee Colony(ABC)[J]. Energy and Buildings,2016,131:42-53. [26] ZHANG Z,CHONG A,PAN Y,et al. Whole building energy model for HVAC optimal control:a practical framework based on deep reinforcement learning[J]. Energy and Buildings,2019, 199:472-490. [27] 中国建筑科学研究院. 民用建筑供暖通风与空气调节设计规范:GB50736-2012[S]. 北京:中国建筑工业出版社, 2012. (China Academy of Building Research. Design code for heating ventilation and air conditioning of civil buildings:GB50736-2012[S]. Beijing:China Architecture and Building Press,2012.) [28] ZHOU Z,FENG J. Deep forest:towards an alternative to deep neural networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2017:3553-3559. [29] BREIMAN L. Bagging predictors[J]. Machine Learning,1996, 24(2):123-140. [30] ZHOU Z H,TANG W. Clusterer ensemble[J]. Knowledge Based Systems,2006,19(1):77-83. [31] CHICCO D, JURMAN G. The advantages of the Matthews Correlation Coefficient (MCC) over F1 score and accuracy in binary classification evaluation[J]. BMC Genomics,2020,21(1):No. 6. [32] GARCÍA S,FERNÁNDEZ A,LUENGO J,et al. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining:experimental analysis of power[J]. Information Sciences,2010, 180(10):2044-2064. |