Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2686-2691.DOI: 10.11772/j.issn.1001-9081.2022091392
• 2022 10th CCF Conference on Big Data • Previous Articles Next Articles
Received:
2022-09-19
Revised:
2022-10-24
Accepted:
2022-10-27
Online:
2023-01-10
Published:
2023-09-10
Contact:
Xujian ZHAO
About author:
LI Hanglin, born in 2000, M. S. candidate. Her research interests include deep learning, neural network compression.
Supported by:
通讯作者:
赵旭剑
作者简介:
李杭霖(2000—),女,四川成都人,硕士研究生,主要研究方向:深度学习、神经网络压缩。
基金资助:
CLC Number:
Xujian ZHAO, Hanglin LI. Deep neural network compression algorithm based on hybrid mechanism[J]. Journal of Computer Applications, 2023, 43(9): 2686-2691.
赵旭剑, 李杭霖. 基于混合机制的深度神经网络压缩算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2686-2691.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091392
模型 | 层数 | 规模/MB | 参数量/106 | 错误率/% |
---|---|---|---|---|
AlexNet(原始) | 8 | >200 | 60.0 | 16.40 |
Visual Geometry Group | 19 | >500 | 138.0 | 7.32 |
GoogLeNet | 22 | ≈50 | 6.8 | 6.67 |
ResNet | 152 | 230 | 19.4 | 3.57 |
Tab. 1 Comparison of classical neural networks
模型 | 层数 | 规模/MB | 参数量/106 | 错误率/% |
---|---|---|---|---|
AlexNet(原始) | 8 | >200 | 60.0 | 16.40 |
Visual Geometry Group | 19 | >500 | 138.0 | 7.32 |
GoogLeNet | 22 | ≈50 | 6.8 | 6.67 |
ResNet | 152 | 230 | 19.4 | 3.57 |
算法 | 准确率/% | 压缩比 | 加速比 |
---|---|---|---|
AlexNet | 68.55 | — | — |
网络剪枝 | 66.44 | 1.03 | 1.09 |
线性参数量化 | 24.46 | 1.05 | 1.10 |
K-means参数量化 | 64.93 | 1.05 | 1.11 |
知识蒸馏 | 69.16 | 20.45 | 1.16 |
分组卷积 | 58.42 | 1.05 | 1.02 |
Tab. 2 Compression results of different compression algorithms on AlexNet
算法 | 准确率/% | 压缩比 | 加速比 |
---|---|---|---|
AlexNet | 68.55 | — | — |
网络剪枝 | 66.44 | 1.03 | 1.09 |
线性参数量化 | 24.46 | 1.05 | 1.10 |
K-means参数量化 | 64.93 | 1.05 | 1.11 |
知识蒸馏 | 69.16 | 20.45 | 1.16 |
分组卷积 | 58.42 | 1.05 | 1.02 |
算法 | 准确率/% | 压缩比 | 加速比 | 容量/MB |
---|---|---|---|---|
AlexNet(原始) | 68.55 | — | — | 177.08 |
KD | 64.93 | 20.45 | 1.11 | — |
KD+GC | 66.74 | 50.11 | 1.06 | — |
KD+GC+NP | 64.56 | 66.92 | 1.04 | — |
KD+GC+NP+CQ | 64.25 | 89.42 | 1.08 | 2.65 |
Tab. 3 Experimental results of compression algorithms
算法 | 准确率/% | 压缩比 | 加速比 | 容量/MB |
---|---|---|---|---|
AlexNet(原始) | 68.55 | — | — | 177.08 |
KD | 64.93 | 20.45 | 1.11 | — |
KD+GC | 66.74 | 50.11 | 1.06 | — |
KD+GC+NP | 64.56 | 66.92 | 1.04 | — |
KD+GC+NP+CQ | 64.25 | 89.42 | 1.08 | 2.65 |
1 | DENIL M, SHAKIBI B, DINH L, et al. Predicting parameters in deep learning[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. Red Hook, NY: Curran Associates Inc., 2013: 2148-2156. |
2 | SETIONO R, LIU H. Neural-network feature selector[J]. IEEE Transactions on Neural Networks, 1997, 8(3): 654-662. 10.1109/72.572104 |
3 | LeCUN Y, DENKER J S, SOLLA S A. Optimal brain damage[M]// Advances in Neural Information Processing Systems 2. San Francisco: Morgan Kaufmann Publishers Inc., 1990: 598-605. |
4 | WANG Y L, ZHANG X L, XIE L X, et al. Pruning from scratch[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 12273-12280. 10.1609/aaai.v34i07.6910 |
5 | DONG X Y, YANG Y. Network pruning via transformable architecture search[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 760-771. 10.1109/iccv.2019.00378 |
6 | CHEN J T, ZHU Z C, LI C, et al. Self-adaptive network pruning[C]// Proceedings of the 2019 International Conference on Neural Information Processing, LNCS 11953. Cham: Springer, 2019: 175-186. |
7 | WEN W, WU C P, WANG Y D, et al. Learning structured sparsity in deep neural networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 2082-2090. |
8 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09) [2022-05-14].. |
9 | REMERO A, BALLAS N, KAHOU S E, et al. FitNets: hints for thin deep nets[EB/OL]. (2015-03-27) [2022-04-03].. |
10 | VANHOUCKE V, SENIOR A, MAO M Z. Improving the speed of neural networks on CPUs[EB/OL]. [2022-02-15].. |
11 | HWANG K, SUNG W. Fixed-point feedforward deep neural network design using weights +1, 0, and -1[C]// Proceedings of the 2014 IEEE Workshop on Signal Processing Systems. Piscataway: IEEE, 2014: 1-6. 10.1109/sips.2014.6986082 |
12 | CHEN W L, WILSON J T, TYREE S, et al. Compressing neural networks with the hashing trick[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 2285-2294. 10.1145/2939672.2939839 |
13 | CHEN W L, WILSON J T, TYREE S, et al. Compressing convolutional neural networks[EB/OL]. (2015-06-14) [2022-03-11].. 10.1145/2939672.2939839 |
14 | GONG Y C, LIU L, YANG M, et al. Compressing deep convolutional networks using vector quantization[EB/OL]. (2014-12-18) [2021-11-06].. |
15 | IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size[EB/OL]. (2016-11-04) [2022-01-03].. |
16 | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2022-05-11].. 10.48550/arXiv.1704.04861 |
17 | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856. 10.1109/cvpr.2018.00716 |
[1] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[2] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
[3] | Rui SHI, Yong LI, Yanhan ZHU. Adversarial sample attack algorithm of modulation signal based on equalization of feature gradient [J]. Journal of Computer Applications, 2024, 44(8): 2521-2527. |
[4] | Xue LI, Guangle YAO, Honghui WANG, Jun LI, Haoran ZHOU, Shaoze YE. Remote sensing image classification based on sample incremental learning [J]. Journal of Computer Applications, 2024, 44(3): 732-736. |
[5] | Mengmei YAN, Dongping YANG. Review of mean field theory for deep neural network [J]. Journal of Computer Applications, 2024, 44(2): 331-343. |
[6] | Yuxin HUANG, Yiwang HUANG, Hui HUANG. Meta label correction method based on shallow network predictions [J]. Journal of Computer Applications, 2024, 44(11): 3364-3370. |
[7] | Yunfei SHEN, Fei SHEN, Fang LI, Jun ZHANG. Deep neural network model acceleration method based on tensor virtual machine [J]. Journal of Computer Applications, 2023, 43(9): 2836-2844. |
[8] | Xiaolin LI, Songjia YANG. Hybrid beamforming for multi-user mmWave relay networks using deep learning [J]. Journal of Computer Applications, 2023, 43(8): 2511-2516. |
[9] | Zhangjian JI, Ming ZHANG, Zilong WANG. High-precision object detection algorithm based on improved VarifocalNet [J]. Journal of Computer Applications, 2023, 43(7): 2147-2154. |
[10] | Haiyu YANG, Wenpu GUO, Kai KANG. Signal modulation recognition method based on convolutional long short-term deep neural network [J]. Journal of Computer Applications, 2023, 43(4): 1318-1322. |
[11] | LIU Xiaoyu, CHEN Huaixin, LIU Biyuan, LIN Ying, MA Teng. License plate detection algorithm in unrestricted scenes based on adaptive confidence threshold [J]. Journal of Computer Applications, 2023, 43(1): 67-73. |
[12] | GAO Yuanyuan, YU Zhenhua, DU Fang, SONG Lijuan. Unlabeled network pruning algorithm based on Bayesian optimization [J]. Journal of Computer Applications, 2023, 43(1): 30-36. |
[13] | Huaiqing HE, Jianqing YAN, Kanghua HUI. Lightweight face recognition method based on deep residual network [J]. Journal of Computer Applications, 2022, 42(7): 2030-2036. |
[14] | Wentao MAO, Guifang WU, Chao WU, Zhi DOU. Animation video generation model based on Chinese impressionistic style transfer [J]. Journal of Computer Applications, 2022, 42(7): 2162-2169. |
[15] | Meng YU, Wentao HE, Xuchuan ZHOU, Mengtian CUI, Keqi WU, Wenjie ZHOU. Review of recommendation system [J]. Journal of Computer Applications, 2022, 42(6): 1898-1913. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||