[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2012:1097-1105. [2] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [3] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards realtime object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:91-99. [4] HE K,GKIOXARI G,DOLLÁR P,et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2980-2988. [5] LIN X,ZHAO C,PAN W. Towards accurate binary convolutional neural network[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2017:344-352. [6] ZHOU S,WU Y,NI Z,et al. DoReFa-Net:training low bitwidth convolutional neural networks with low bitwidth gradients[EB/OL].[2020-06-20]. https://arxiv.org/pdf/1606.06160.pdf. [7] ZHUANG Z,TAN M,ZHUANG B,et al. Discrimination-aware channel pruning for deep neural networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2018:883-894. [8] HE Y,LIN J,LIU Z,et al. AMC:AutoML for model compression and acceleration on mobile devices[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11211. Cham:Springer,2018:525-542. [9] CAI H,ZHU L,HAN S. ProxylessNAS:direct neural architecture search on target task and hardware[C/OL]//Proceedings of the 2019 International Conference on Learning Representation.[2020-12-02]. https://arxiv.org/pdf/1812.00332.pdf. [10] WU B,WANG Y,ZHANG P,et al. Mixed precision quantization of convnets via differentiable neural architecture search[EB/OL].[2019-11-30]. https://arxiv.org/pdf/1812.00090.pdf. [11] CHEN Y,FAN H,XU B,et al. Drop an octave:reducing spatial redundancy in convolutional neural networks with octave convolution[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:3434-3443. [12] BENGIO Y, LÉONARD N, COURVILLE A. Estimating or propagating gradients through stochastic neurons for conditional computation[EB/OL].[2020-08-15]. https://arxiv.org/pdf/1308.3432.pdf. [13] RASTEGARI M,ORDONEZ V,REDMON J,et al. XNOR-Net:ImageNet classification using binary convolutional neural networks[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9908. Cham:Springer,2016:525-542. [14] LIU Z,WU B,LUO W,et al. Bi-Real net:enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11219. Cham:Springer,2018:747-763. [15] 邵伟平, 王兴, 曹昭睿, 等. 基于MobileNet与YOLOv3的轻量化卷积神经网络设计[J]. 计算机应用,2020,40(S1):8-13. (SHAO W P,WANG X,CAO Z R,et al. Design of lightweight convolutional neural network based on MobileNet and YOLOv3[J]. Journal of Computer Applications,2020,40(S1):8-13.) [16] 屈伟. 基于FPGA的深度学习在图像识别上的优化与加速应用[D]. 成都:电子科技大学,2019:25-35.(QU W. Optimizing and accelerating application of deep learning in image recognition based on FPGA[D]. Chengdu:University of Electronic Science and Technology of China,2019:25-35.) [17] 黄萱昆. 基于深度学习的移动端图像识别算法[D]. 北京:北京邮电大学,2018:30-33.(HUANG X K. Deep learning based image recognition algorithm for mobile devices[D]. Beijing:Beijing University of Posts and Telecommunications, 2018:30-33.) [18] ZHANG D,YANG J,YE D,et al. LQ-Nets:learned quantization for highly accurate and compact deep neural networks[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11212. Cham:Springer,2018:373-390. |