| 1 | SCHAPIRE R E. The strength of weak learnability[J]. Machine Learning, 1990, 5(2):197-227.  10.1007/bf00116037 | 
																													
																							| 2 | REYZIN L, SCHAPIRE R E. How boosting the margin can also boost classifier complexity[C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM, 2006:753-760.  10.1145/1143844.1143939 | 
																													
																							| 3 | FREUND Y, SCHAPIRE R E. A decision-the retic generation of online learning and an application to boosting[J]. Journal of Computer and System Science, 1997, 55(1):119-139.  10.1006/jcss.1997.1504 | 
																													
																							| 4 | BIAU G, CADRE B, ROUVIÈRE L. Accelerated gradient boosting[J]. Machine Learning, 2019, 108(6):971-992.  10.1007/s10994-019-05787-1 | 
																													
																							| 5 | ZHANG C S, BI J J, XU S X, et al. Multi-Imbalance: an open-source software for multi-class imbalance learning [J]. Knowledge-Based Systems, 2019, 174:137-143.  10.1016/j.knosys.2019.03.001 | 
																													
																							| 6 | FRIEDMAN J, HASTIE T, TIBSHIRANI R. Additive logistic regression: a statistical view of boosting[J]. The Annals of Statistics, 2000, 28(2):337-407.  10.1214/aos/1016218223 | 
																													
																							| 7 | SCHAPIRE R E, FREUND Y, BARTLETT P, et al. Boosting the margin: a new explanation for the effectiveness of voting methods[J]. The Annals of Statistics, 1998, 26(5):1651-1686.  10.1214/aos/1024691352 | 
																													
																							| 8 | SHEN C H, LI H X. On the dual formulation of boosting algorithms[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2010, 32(12):2216-2231.  10.1109/tpami.2010.47 | 
																													
																							| 9 | AL-SHEMARRY M S, LI Y, ABDULLA S. Ensemble of AdaBoost cascades of 3L-LBPs classifiers for license plates detection with low quality images[J]. Expert Systems with Applications, 2018, 92:216-235.  10.1016/j.eswa.2017.09.036 | 
																													
																							| 10 | GOSZTOLYA G, BUSA-FEKETE R. Calibrating AdaBoost for phoneme classification[J]. Soft Computing, 2019, 23(1):115-128.  10.1007/s00500-018-3577-z | 
																													
																							| 11 | PINTO T, PRAÇA I, VALE Z, et al. Ensemble learning for electricity consumption forecasting in office buildings[J]. Neurocomputing, 2021, 423:747-755.  10.1016/j.neucom.2020.02.124 | 
																													
																							| 12 | GUTIÉRREZ-TOBAL G C, ÁLVAREZ D, DEL CAMPO F, et al. Utility of AdaBoost to detect sleep apnea-hypopnea syndrome from single-channel airflow[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(3):636-646.  10.1109/tbme.2015.2467188 | 
																													
																							| 13 | ZHANG Y, LI D P, WANG Y J. An indoor passive positioning method using CSI fingerprint based on AdaBoost[J]. IEEE Sensors Journal, 2019, 19(14):5792-5800.  10.1109/jsen.2019.2907109 | 
																													
																							| 14 | MA Z, LIU Y, LIU X M, et al. Lightweight privacy preserving ensemble classification for face recognition[J]. IEEE Internet of Things Journal, 2019, 6(3): 5778-5790.  10.1109/jiot.2019.2905555 | 
																													
																							| 15 | AL-SALEMI B, AYOB M, NOAH S A M. Feature ranking for enhancing boosting-based multi-label text categorization[J]. Expert Systems with Applications, 2018, 113:531-543.  10.1016/j.eswa.2018.07.024 | 
																													
																							| 16 | VALLE C, ÑANCULEF R, ALLENDE H, et al. LocalBoost: a parallelizable approach to boosting classifiers[J]. Neural Processing Letters, 2019, 50(1):19-41.  10.1007/s11063-018-9924-3 | 
																													
																							| 17 | QI Z Q, MENG F, TIAN Y J, et al. AdaBoost-LLP: a boosting method for learning with label proportions[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8):3548-3559.  10.1109/tnnls.2017.2727065 | 
																													
																							| 18 | 高敬阳,赵彦. 基于样本抽样和权重调整的SWA-Adaboost算法[J]. 计算机工程, 2014, 40(9):248-251, 256.  10.3969/j.issn.1000-3428.2014.09.050 | 
																													
																							|  | GAO J Y, ZHAO Y. SWA-Adaboost algorithm based on sampling and weight adjustment[J]. Computer Engineering, 2014, 40(9):248-251, 256.  10.3969/j.issn.1000-3428.2014.09.050 | 
																													
																							| 19 | YANG Y, JIANG J M. Hybrid sampling-based clustering ensemble with global and local constitutions[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(5):952-965.  10.1109/tnnls.2015.2430821 | 
																													
																							| 20 | FILISBINO T A, GIRALDI G A, THOMAZ C E. Nested AdaBoost procedure for classification and multi-class nonlinear discriminant analysis[J]. Soft Computing, 2020, 24(23):17969-17990.  10.1007/s00500-020-05045-w | 
																													
																							| 21 | HTIKE K K. Efficient determination of the number of weak learners in AdaBoost[J]. Journal of Experimental and Theoretical Artificial Intelligence, 2017, 29(5):967-982.  10.1080/0952813x.2016.1266038 | 
																													
																							| 22 | 吴恋,马敏耀,黄一峰,等. 基于AdaBoost算法的Linux病毒检测研究[J]. 计算机工程, 2018, 44(8):161-166. | 
																													
																							|  | WU L, MA M Y, HUANG Y F, et al. Linux virus detection study based on AdaBoost algorithm[J]. Computer Engineering, 2018, 44(8):161-166. | 
																													
																							| 23 | ZHANG P B, YANG Z X. A novel AdaBoost framework with robust threshold and structural optimization[J]. IEEE Transactions on Cybernetics, 2018, 48(1):64-76.  10.1109/tcyb.2016.2623900 | 
																													
																							| 24 | 邱仁博,娄震. 一种改进的带参数AdaBoost算法[J]. 计算机工程, 2016, 42(7):199-202, 208.  10.3969/j.issn.1000-3428.2016.07.033 | 
																													
																							|  | QIU R B, LOU Z. An improved parameterized AdaBoost algorithm[J]. Computer Engineering, 2016, 42(7):199-202, 208.  10.3969/j.issn.1000-3428.2016.07.033 | 
																													
																							| 25 | WU S Q, NAGAHASHI H. Parameterized AdaBoost: introducing a parameter to speed up the training of real AdaBoost[J]. IEEE Signal Processing Letters, 2014, 21(6):687-691.  10.1109/lsp.2014.2313570 | 
																													
																							| 26 | XING H J, LIU W T. Robust AdaBoost based ensemble of one-class support vector machines[J]. Information Fusion, 2020, 55:45-58.  10.1016/j.inffus.2019.08.002 | 
																													
																							| 27 | 王玲娣,徐华. AdaBoost的多样性分析及改进[J]. 计算机应用, 2018, 38(3):650-654, 660.  10.11772/j.issn.1001-9081.2017092226 | 
																													
																							|  | WANG L D, XU H. Diversity analysis and improvement of AdaBoost[J]. Journal of Computer Applications, 2018, 38(3): 650-654, 660.  10.11772/j.issn.1001-9081.2017092226 | 
																													
																							| 28 | SHEN C H, LI H X. Boosting through optimization of margin distributions[J]. IEEE Transactions on Neural Networks, 2010, 21(4): 659-666.  10.1109/tnn.2010.2040484 | 
																													
																							| 29 | 朱亮,徐华,崔鑫. 基于基分类器系数和多样性的改进AdaBoost算法[J]. 计算机应用, 2021, 41(8):2225-2231. | 
																													
																							|  | ZHU L, XU H, CUI X. Improved AdaBoost algorithm based on classifier coefficient and diversity[J]. Journal of Computer Applications, 2021, 41(8):2225-2231. | 
																													
																							| 30 | FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8):861-874.  10.1016/j.patrec.2005.10.010 |