[1] DAI H L. Class imbalance learning via a fuuzy total margin based support vector machine[J]. Applied Soft Computing, 2015, 31(C): 172-184. [2] 谭洁帆,朱焱,陈同孝,等.基于卷积神经网络和代价敏感的不平衡图像分类方法[J].计算机应用,2018,38(7):1862-1865,1871.(TAN J F, ZHU Y, CHEN T X, et al. Imbalanced image classification approach based on convolution network and cost-sensitivity[J]. Journal of Computer Applications,2018,38(7):1862-1865,1871.) [3] WANG S, YAO X. Using class imbalance learning for software defect prediction[J]. IEEE Transactions on Reliability, 2013, 62(2): 434-443. [4] OZCIFT A, GULTEN A. Classifer ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms[J]. Computer Methods and Programs in Biomedicine, 2011, 104(3):443-451. [5] YU H, NI J, ZHAO J. ACOSampling: an ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data[J]. Neurocomputing, 2013,101:309-318. [6] TOMEK I. Two modifications of CNN[J]. IEEE Transactions on Systems, Man and Cybernetics, 1976, SMC-6(11): 769-772. [7] KUBAT M, MATWIN S. Addressing the curse of imbalanced training sets: one-sided selection[C]// Proceedings of the 14th International Conference on Machine Learning. San Francisco: Morgan Kaufmann, 1997: 179-186. [8] LAURIKKALA J. Improving identification of difficult small classes by balancing class distribution[C]// Proceedings of the 8th Conference on Artificial Intelligence in Medicine in Europe. Berlin: Springer, 2001: 63-66. [9] CHAWLA N, BOWYER K, HALL L, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357. [10] RIVERA W A. Noise reduction a priori synthetic over-sampling for class imbalanced data sets[J]. Information Sciences, 2017, 408(C): 146-161. [11] MA L, FAN S. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests[J]. BMC Bioinformatics, 2017,18(1): 169. [12] BOROWSKA, K, STEPANIUK J. Imbalanced data classification: a novel re-sampling approach combining versatile improved SMOTE and rough sets[C]// CISIM 2016: IFIP International Conference on Computer Information Systems and Industrial Management. Berlin: Springer, 2016: 31-42. [13] BAIG M M, AWAIS M M, EL-ALFY E S M. AdaBoost-based artificial neural network learning[J]. Neurocomputing, 2017, 248(C): 120-126. [14] MINZ A, MAHOBIYA C. MR image classification using Adaboost for brain tumor type[C]// Proceedings of the 2017 IEEE 7th International Advance Computing Conference. Washington, DC: IEEE Computer Society, 2017:701-705. [15] 王军,费凯,程勇.基于改进的Adaboost-BP模型在降水中的预测[J]. 计算机应用, 2017, 37(9):2689-2693.(WANG J,FEI K,CHENG Y. Prediction of rainfall based on improved Adaboost-BP model[J]. Journal of Computer Applications, 2017, 37(9):2689-2693.) [16] SCHAPIRE R E, FREUND Y, BARTLETT P, et al. Boosting the margin: a new explanation for the effectiveness of voting methods[J]. Annals of Statistics, 1998, 26(5): 1651-1686. [17] GAO W, ZHOU Z H. On the doubt about margin explanation of boosting[J]. Artificial Intelligence, 2013,203:1-18. [18] BACHE K, LICHMAN M. UCI repository of machine learning databases[DB/OL].[2018-06-20].http://www.ics.uci.edu/~mlearn/MLRepository.html. [19] van HULSE J, KHOSHGOFTAAR T M, NAPOLITANO A. Expertimental perspectives on learning from imbalanced data[C]// Proceedings of the 24th International Conference on Machine Learing. New York: ACM, 2007: 935-942. [20] LIU N, WEI L W, AUNG Z. Handling class imbalance in customer behavior prediction[C]// Proceedings of the 2014 International Conference on Collaboration Technologies and Systems. Piscataway, NJ: IEEE, 2014: 100-103. |