Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (6): 1759-1767.DOI: 10.11772/j.issn.1001-9081.2022060901
Special Issue: CCF第37届中国计算机应用大会 (CCF NCCA 2022)
• The 37 CCF National Conference of Computer Applications (CCF NCCA 2022) • Previous Articles Next Articles
Heming JIA1(), Shanglong LI1, Lizhen CHEN1, Qingxin LIU2, Di WU3, Rong ZHENG1
Received:
2022-06-22
Revised:
2022-08-07
Accepted:
2022-08-12
Online:
2022-08-26
Published:
2023-06-10
Contact:
Heming JIA
About author:
LI Shanglong, born in 2000. His research interests include swarm intelligence optimization algorithm.Supported by:
贾鹤鸣1(), 力尚龙1, 陈丽珍1, 刘庆鑫2, 吴迪3, 郑荣1
通讯作者:
贾鹤鸣
作者简介:
贾鹤鸣(1983—),男,黑龙江哈尔滨人,教授,博士,CCF高级会员,主要研究方向:群体智能优化算法Email:jiaheminglucky99@126.com基金资助:
CLC Number:
Heming JIA, Shanglong LI, Lizhen CHEN, Qingxin LIU, Di WU, Rong ZHENG. Remora optimization algorithm based on chaotic host switching mechanism[J]. Journal of Computer Applications, 2023, 43(6): 1759-1767.
贾鹤鸣, 力尚龙, 陈丽珍, 刘庆鑫, 吴迪, 郑荣. 基于混沌宿主切换机制的䲟鱼优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1759-1767.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022060901
函数类型 | 函数 | 理论最优值 |
---|---|---|
单峰函数 | F1 | 100 |
多峰函数 | F2 | 1 100 |
F3 | 700 | |
无峰函数 | F4 | 1 900 |
混合函数 | F5 | 1 700 |
F6 | 1 600 | |
F7 | 2 100 | |
复合函数 | F8 | 2 200 |
F9 | 2 400 | |
F10 | 2 500 |
Tab. 1 CEC2020 test functions
函数类型 | 函数 | 理论最优值 |
---|---|---|
单峰函数 | F1 | 100 |
多峰函数 | F2 | 1 100 |
F3 | 700 | |
无峰函数 | F4 | 1 900 |
混合函数 | F5 | 1 700 |
F6 | 1 600 | |
F7 | 2 100 | |
复合函数 | F8 | 2 200 |
F9 | 2 400 | |
F10 | 2 500 |
算法 | 参数设置 | 算法 | 参数设置 |
---|---|---|---|
MROA | HHO | ||
ROA | SCA | ||
RSA | STOA | ||
WOA |
Tab. 2 Parameter setting of different algorithms
算法 | 参数设置 | 算法 | 参数设置 |
---|---|---|---|
MROA | HHO | ||
ROA | SCA | ||
RSA | STOA | ||
WOA |
函数 | 评价指标 | MROA | ROA | RSA | WOA | HHO | SSO | SCA | STOA |
---|---|---|---|---|---|---|---|---|---|
F1 | Best | 1.02E+02 | 2.10E+07 | 2.11E+09 | 4.75E+06 | 3.66E+05 | 1.16E+09 | 2.04E+08 | 6.47E+06 |
Mean | 3.83E+03 | 1.54E+09 | 1.31E+10 | 5.04E+07 | 7.88E+06 | 2.63E+09 | 1.00E+09 | 2.97E+08 | |
Std | 4.09E+03 | 2.35E+09 | 3.57E+09 | 5.90E+07 | 2.34E+07 | 1.13E+09 | 3.90E+08 | 3.40E+08 | |
F2 | Best | 1.41E+03 | 1.69E+03 | 2.27E+03 | 1.69E+03 | 1.77E+03 | 2.28E+03 | 2.00E+03 | 1.68E+03 |
Mean | 2.04E+03 | 2.19E+03 | 2.78E+03 | 2.15E+03 | 2.11E+03 | 2.56E+03 | 2.50E+03 | 2.10E+03 | |
Std | 2.81E+02 | 2.71E+02 | 2.29E+02 | 3.14E+02 | 2.24E+02 | 1.57E+02 | 2.20E+02 | 2.26E+02 | |
F3 | Best | 7.25E+02 | 7.54E+02 | 7.87E+02 | 7.54E+02 | 7.47E+02 | 7.74E+02 | 7.57E+02 | 7.43E+02 |
Mean | 7.75E+02 | 7.90E+02 | 8.14E+02 | 7.89E+02 | 7.90E+02 | 7.96E+02 | 7.82E+02 | 7.62E+02 | |
Std | 2.92E+01 | 1.79E+01 | 1.21E+01 | 2.41E+01 | 2.03E+01 | 1.07E+01 | 1.18E+01 | 1.22E+01 | |
F4 | Best | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 |
Mean | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | |
Std | 0.00E+00 | 0.00E+00 | 0.00E+00 | 3.13E-01 | 0.00E+00 | 0.00E+00 | 2.33E+00 | 7.27E-01 | |
F5 | Best | 1.71E+03 | 3.13E+03 | 3.10E+05 | 9.14E+03 | 4.36E+03 | 2.43E+04 | 1.11E+04 | 8.83E+03 |
Mean | 1.92E+03 | 8.82E+04 | 5.24E+05 | 2.36E+05 | 7.56E+04 | 2.55E+05 | 6.95E+04 | 1.26E+05 | |
Std | 1.67E+02 | 1.48E+05 | 7.15E+04 | 5.22E+05 | 6.68E+04 | 1.57E+05 | 8.43E+04 | 1.59E+05 | |
F6 | Best | 1.60E+03 | 1.62E+03 | 1.89E+03 | 1.65E+03 | 1.60E+03 | 1.79E+03 | 1.69E+03 | 1.64E+03 |
Mean | 1.75E+03 | 1.84E+03 | 2.24E+03 | 1.84E+03 | 1.92E+03 | 1.91E+03 | 1.82E+03 | 1.82E+03 | |
Std | 9.97E+01 | 1.04E+02 | 1.77E+02 | 1.06E+02 | 1.31E+02 | 1.07E+02 | 7.49E+01 | 1.02E+02 | |
F7 | Best | 2.10E+03 | 2.81E+03 | 1.89E+04 | 8.87E+03 | 3.13E+03 | 6.23E+03 | 3.65E+03 | 3.45E+03 |
Mean | 2.13E+03 | 1.35E+04 | 1.13E+06 | 3.92E+05 | 5.65E+04 | 1.45E+04 | 1.96E+04 | 1.32E+04 | |
Std | 3.63E+01 | 9.10E+03 | 2.58E+06 | 8.41E+05 | 1.10E+05 | 8.42E+03 | 1.12E+04 | 9.52E+03 | |
F8 | Best | 2.23E+03 | 2.27E+03 | 2.53E+03 | 2.29E+03 | 2.31E+03 | 2.39E+03 | 2.32E+03 | 2.24E+03 |
Mean | 2.31E+03 | 2.39E+03 | 3.19E+03 | 2.40E+03 | 2.42E+03 | 2.49E+03 | 2.40E+03 | 2.95E+03 | |
Std | 2.77E+01 | 7.82E+01 | 3.70E+02 | 3.40E+02 | 3.94E+02 | 4.92E+01 | 4.26E+01 | 6.33E+02 | |
F9 | Best | 2.50E+03 | 2.54E+03 | 2.74E+03 | 2.62E+03 | 2.50E+03 | 2.59E+03 | 2.78E+03 | 2.74E+03 |
Mean | 2.75E+03 | 2.77E+03 | 2.87E+03 | 2.79E+03 | 2.80E+03 | 2.78E+03 | 2.79E+03 | 2.76E+03 | |
Std | 7.25E+01 | 5.52E+01 | 5.25E+01 | 4.51E+01 | 9.81E+01 | 7.88E+01 | 7.28E+00 | 1.35E+01 | |
F10 | Best | 2.90E+03 | 2.91E+03 | 3.10E+03 | 2.77E+03 | 2.90E+03 | 2.95E+03 | 2.96E+03 | 2.91E+03 |
Mean | 2.93E+03 | 3.01E+03 | 3.39E+03 | 2.95E+03 | 2.94E+03 | 3.03E+03 | 2.98E+03 | 2.94E+03 | |
Std | 2.72E+01 | 6.28E+01 | 2.33E+02 | 4.95E+01 | 2.97E+01 | 5.85E+01 | 2.17E+01 | 1.72E+01 |
Tab. 3 Test results of different algorithms on CEC2020 test functions
函数 | 评价指标 | MROA | ROA | RSA | WOA | HHO | SSO | SCA | STOA |
---|---|---|---|---|---|---|---|---|---|
F1 | Best | 1.02E+02 | 2.10E+07 | 2.11E+09 | 4.75E+06 | 3.66E+05 | 1.16E+09 | 2.04E+08 | 6.47E+06 |
Mean | 3.83E+03 | 1.54E+09 | 1.31E+10 | 5.04E+07 | 7.88E+06 | 2.63E+09 | 1.00E+09 | 2.97E+08 | |
Std | 4.09E+03 | 2.35E+09 | 3.57E+09 | 5.90E+07 | 2.34E+07 | 1.13E+09 | 3.90E+08 | 3.40E+08 | |
F2 | Best | 1.41E+03 | 1.69E+03 | 2.27E+03 | 1.69E+03 | 1.77E+03 | 2.28E+03 | 2.00E+03 | 1.68E+03 |
Mean | 2.04E+03 | 2.19E+03 | 2.78E+03 | 2.15E+03 | 2.11E+03 | 2.56E+03 | 2.50E+03 | 2.10E+03 | |
Std | 2.81E+02 | 2.71E+02 | 2.29E+02 | 3.14E+02 | 2.24E+02 | 1.57E+02 | 2.20E+02 | 2.26E+02 | |
F3 | Best | 7.25E+02 | 7.54E+02 | 7.87E+02 | 7.54E+02 | 7.47E+02 | 7.74E+02 | 7.57E+02 | 7.43E+02 |
Mean | 7.75E+02 | 7.90E+02 | 8.14E+02 | 7.89E+02 | 7.90E+02 | 7.96E+02 | 7.82E+02 | 7.62E+02 | |
Std | 2.92E+01 | 1.79E+01 | 1.21E+01 | 2.41E+01 | 2.03E+01 | 1.07E+01 | 1.18E+01 | 1.22E+01 | |
F4 | Best | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 |
Mean | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | |
Std | 0.00E+00 | 0.00E+00 | 0.00E+00 | 3.13E-01 | 0.00E+00 | 0.00E+00 | 2.33E+00 | 7.27E-01 | |
F5 | Best | 1.71E+03 | 3.13E+03 | 3.10E+05 | 9.14E+03 | 4.36E+03 | 2.43E+04 | 1.11E+04 | 8.83E+03 |
Mean | 1.92E+03 | 8.82E+04 | 5.24E+05 | 2.36E+05 | 7.56E+04 | 2.55E+05 | 6.95E+04 | 1.26E+05 | |
Std | 1.67E+02 | 1.48E+05 | 7.15E+04 | 5.22E+05 | 6.68E+04 | 1.57E+05 | 8.43E+04 | 1.59E+05 | |
F6 | Best | 1.60E+03 | 1.62E+03 | 1.89E+03 | 1.65E+03 | 1.60E+03 | 1.79E+03 | 1.69E+03 | 1.64E+03 |
Mean | 1.75E+03 | 1.84E+03 | 2.24E+03 | 1.84E+03 | 1.92E+03 | 1.91E+03 | 1.82E+03 | 1.82E+03 | |
Std | 9.97E+01 | 1.04E+02 | 1.77E+02 | 1.06E+02 | 1.31E+02 | 1.07E+02 | 7.49E+01 | 1.02E+02 | |
F7 | Best | 2.10E+03 | 2.81E+03 | 1.89E+04 | 8.87E+03 | 3.13E+03 | 6.23E+03 | 3.65E+03 | 3.45E+03 |
Mean | 2.13E+03 | 1.35E+04 | 1.13E+06 | 3.92E+05 | 5.65E+04 | 1.45E+04 | 1.96E+04 | 1.32E+04 | |
Std | 3.63E+01 | 9.10E+03 | 2.58E+06 | 8.41E+05 | 1.10E+05 | 8.42E+03 | 1.12E+04 | 9.52E+03 | |
F8 | Best | 2.23E+03 | 2.27E+03 | 2.53E+03 | 2.29E+03 | 2.31E+03 | 2.39E+03 | 2.32E+03 | 2.24E+03 |
Mean | 2.31E+03 | 2.39E+03 | 3.19E+03 | 2.40E+03 | 2.42E+03 | 2.49E+03 | 2.40E+03 | 2.95E+03 | |
Std | 2.77E+01 | 7.82E+01 | 3.70E+02 | 3.40E+02 | 3.94E+02 | 4.92E+01 | 4.26E+01 | 6.33E+02 | |
F9 | Best | 2.50E+03 | 2.54E+03 | 2.74E+03 | 2.62E+03 | 2.50E+03 | 2.59E+03 | 2.78E+03 | 2.74E+03 |
Mean | 2.75E+03 | 2.77E+03 | 2.87E+03 | 2.79E+03 | 2.80E+03 | 2.78E+03 | 2.79E+03 | 2.76E+03 | |
Std | 7.25E+01 | 5.52E+01 | 5.25E+01 | 4.51E+01 | 9.81E+01 | 7.88E+01 | 7.28E+00 | 1.35E+01 | |
F10 | Best | 2.90E+03 | 2.91E+03 | 3.10E+03 | 2.77E+03 | 2.90E+03 | 2.95E+03 | 2.96E+03 | 2.91E+03 |
Mean | 2.93E+03 | 3.01E+03 | 3.39E+03 | 2.95E+03 | 2.94E+03 | 3.03E+03 | 2.98E+03 | 2.94E+03 | |
Std | 2.72E+01 | 6.28E+01 | 2.33E+02 | 4.95E+01 | 2.97E+01 | 5.85E+01 | 2.17E+01 | 1.72E+01 |
函数 | ROA | RSA | WOA | HHO | SSO | SCA | STOA |
---|---|---|---|---|---|---|---|
+/=/- | 9/1/0 | 9/1/0 | 8/2/0 | 9/1/0 | 9/1/0 | 10/0/0 | 10/0/0 |
F1 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 |
F2 | 3.02E-02 | 6.10E-05 | 3.36E-03 | 2.15E-02 | 4.27E-04 | 6.10E-05 | 4.13E-02 |
F3 | 2.15E-02 | 6.10E-05 | 8.36E-03 | 3.36E-03 | 8.54E-04 | 4.27E-03 | 6.10E-05 |
F4 | 1.00E+00 | 1.00E+00 | 6.25E-02 | 1.00E+00 | 1.00E+00 | 3.91E-03 | 3.91E-03 |
F5 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 |
F6 | 4.27E-04 | 6.10E-05 | 6.10E-05 | 8.54E-04 | 3.05E-04 | 3.36E-03 | 1.51E-02 |
F7 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 |
F8 | 6.10E-05 | 6.10E-05 | 1.83E-04 | 2.15E-02 | 6.10E-05 | 6.10E-05 | 6.10E-05 |
F9 | 4.79E-02 | 6.10E-05 | 4.79E-02 | 1.22E-04 | 2.56E-02 | 6.10E-05 | 5.37E-03 |
F10 | 6.10E-05 | 6.10E-05 | 9.46E-02 | 2.15E-02 | 6.10E-05 | 6.10E-05 | 1.81E-02 |
Tab. 4 Results of different algorithms in Wilcoxon rank-sum test
函数 | ROA | RSA | WOA | HHO | SSO | SCA | STOA |
---|---|---|---|---|---|---|---|
+/=/- | 9/1/0 | 9/1/0 | 8/2/0 | 9/1/0 | 9/1/0 | 10/0/0 | 10/0/0 |
F1 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 |
F2 | 3.02E-02 | 6.10E-05 | 3.36E-03 | 2.15E-02 | 4.27E-04 | 6.10E-05 | 4.13E-02 |
F3 | 2.15E-02 | 6.10E-05 | 8.36E-03 | 3.36E-03 | 8.54E-04 | 4.27E-03 | 6.10E-05 |
F4 | 1.00E+00 | 1.00E+00 | 6.25E-02 | 1.00E+00 | 1.00E+00 | 3.91E-03 | 3.91E-03 |
F5 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 |
F6 | 4.27E-04 | 6.10E-05 | 6.10E-05 | 8.54E-04 | 3.05E-04 | 3.36E-03 | 1.51E-02 |
F7 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 | 6.10E-05 |
F8 | 6.10E-05 | 6.10E-05 | 1.83E-04 | 2.15E-02 | 6.10E-05 | 6.10E-05 | 6.10E-05 |
F9 | 4.79E-02 | 6.10E-05 | 4.79E-02 | 1.22E-04 | 2.56E-02 | 6.10E-05 | 5.37E-03 |
F10 | 6.10E-05 | 6.10E-05 | 9.46E-02 | 2.15E-02 | 6.10E-05 | 6.10E-05 | 1.81E-02 |
函数 | MROA | ROA | RSA | WOA | HHO | SSO | SCA | STOA |
---|---|---|---|---|---|---|---|---|
F1 | 0.273 202 2 | 0.109 516 9 | 0.233 537 4 | 0.042 122 3 | 0.158 553 7 | 0.237 734 9 | 0.049 892 3 | 0.047 616 6 |
F2 | 0.301 572 5 | 0.134 609 2 | 0.209 170 6 | 0.040 803 6 | 0.112 684 1 | 0.207 709 3 | 0.048 684 2 | 0.049 209 1 |
F3 | 0.243 190 3 | 0.122 151 2 | 0.203 011 1 | 0.036 892 5 | 0.103 188 3 | 0.204 136 2 | 0.044 983 4 | 0.045 632 0 |
F4 | 0.230 839 4 | 0.107 034 8 | 0.199 778 4 | 0.034 960 0 | 0.102 512 4 | 0.201 194 4 | 0.042 235 2 | 0.047 349 7 |
F5 | 0.227 344 4 | 0.118 260 0 | 0.203 587 7 | 0.035 815 3 | 0.096 421 9 | 0.203 309 8 | 0.044 361 1 | 0.045 207 8 |
F6 | 0.228 671 6 | 0.111 391 1 | 0.201 590 5 | 0.034 440 5 | 0.095 257 5 | 0.200 472 7 | 0.042 467 7 | 0.043 677 7 |
F7 | 0.230 216 0 | 0.114 511 0 | 0.200 386 0 | 0.033 580 7 | 0.095 659 9 | 0.198 468 7 | 0.041 701 9 | 0.042 133 1 |
F8 | 0.352 756 4 | 0.184 336 5 | 0.222 792 7 | 0.056 672 9 | 0.145 810 7 | 0.222 365 7 | 0.064 689 3 | 0.066 167 9 |
F9 | 0.457 969 5 | 0.203 274 0 | 0.227 788 8 | 0.061 912 8 | 0.161 446 6 | 0.227 367 1 | 0.069 315 4 | 0.070 520 0 |
F10 | 0.340 119 1 | 0.171 733 9 | 0.219 387 3 | 0.053 461 5 | 0.135 624 5 | 0.219 461 4 | 0.060 849 8 | 0.061 859 9 |
Tab. 5 Computational time of different algorithm on CEC2020 test functions
函数 | MROA | ROA | RSA | WOA | HHO | SSO | SCA | STOA |
---|---|---|---|---|---|---|---|---|
F1 | 0.273 202 2 | 0.109 516 9 | 0.233 537 4 | 0.042 122 3 | 0.158 553 7 | 0.237 734 9 | 0.049 892 3 | 0.047 616 6 |
F2 | 0.301 572 5 | 0.134 609 2 | 0.209 170 6 | 0.040 803 6 | 0.112 684 1 | 0.207 709 3 | 0.048 684 2 | 0.049 209 1 |
F3 | 0.243 190 3 | 0.122 151 2 | 0.203 011 1 | 0.036 892 5 | 0.103 188 3 | 0.204 136 2 | 0.044 983 4 | 0.045 632 0 |
F4 | 0.230 839 4 | 0.107 034 8 | 0.199 778 4 | 0.034 960 0 | 0.102 512 4 | 0.201 194 4 | 0.042 235 2 | 0.047 349 7 |
F5 | 0.227 344 4 | 0.118 260 0 | 0.203 587 7 | 0.035 815 3 | 0.096 421 9 | 0.203 309 8 | 0.044 361 1 | 0.045 207 8 |
F6 | 0.228 671 6 | 0.111 391 1 | 0.201 590 5 | 0.034 440 5 | 0.095 257 5 | 0.200 472 7 | 0.042 467 7 | 0.043 677 7 |
F7 | 0.230 216 0 | 0.114 511 0 | 0.200 386 0 | 0.033 580 7 | 0.095 659 9 | 0.198 468 7 | 0.041 701 9 | 0.042 133 1 |
F8 | 0.352 756 4 | 0.184 336 5 | 0.222 792 7 | 0.056 672 9 | 0.145 810 7 | 0.222 365 7 | 0.064 689 3 | 0.066 167 9 |
F9 | 0.457 969 5 | 0.203 274 0 | 0.227 788 8 | 0.061 912 8 | 0.161 446 6 | 0.227 367 1 | 0.069 315 4 | 0.070 520 0 |
F10 | 0.340 119 1 | 0.171 733 9 | 0.219 387 3 | 0.053 461 5 | 0.135 624 5 | 0.219 461 4 | 0.060 849 8 | 0.061 859 9 |
函数 | β=0.1 | β=0.2 | β=0.3 | β=0.4 | β=0.5 | β=0.6 | β=0.7 | β=0.8 | β=0.9 |
---|---|---|---|---|---|---|---|---|---|
F1 | 3.69E+03 | 3.07E+03 | 3.56E+03 | 3.63E+03 | 2.93E+03 | 2.84E+03 | 3.71E+03 | 3.26E+03 | 2.89E+03 |
F2 | 1.98E+03 | 2.03E+03 | 1.98E+03 | 2.01E+03 | 2.02E+03 | 1.97E+03 | 2.02E+03 | 2.00E+03 | 1.98E+03 |
F3 | 7.48E+02 | 7.47E+02 | 7.48E+02 | 7.48E+02 | 7.46E+02 | 7.47E+02 | 7.42E+02 | 7.49E+02 | 7.44E+02 |
F4 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 |
F5 | 1.91E+03 | 1.87E+03 | 1.88E+03 | 1.90E+03 | 1.87E+03 | 1.86E+03 | 1.90E+03 | 1.90E+03 | 1.92E+03 |
F6 | 1.73E+03 | 1.72E+03 | 1.71E+03 | 1.68E+03 | 1.71E+03 | 1.70E+03 | 1.70E+03 | 1.71E+03 | 1.70E+03 |
F7 | 2.12E+03 | 2.12E+03 | 2.12E+03 | 2.12E+03 | 2.12E+03 | 2.11E+03 | 2.12E+03 | 2.12E+03 | 2.13E+03 |
F8 | 2.30E+03 | 2.30E+03 | 2.31E+03 | 2.30E+03 | 2.30E+03 | 2.30E+03 | 2.31E+03 | 2.30E+03 | 2.31E+03 |
F9 | 2.74E+03 | 2.74E+03 | 2.75E+03 | 2.75E+03 | 2.74E+03 | 2.74E+03 | 2.75E+03 | 2.73E+03 | 2.75E+03 |
F10 | 2.92E+03 | 2.92E+03 | 2.92E+03 | 2.92E+03 | 2.93E+03 | 2.92E+03 | 2.92E+03 | 2.91E+03 | 2.92E+03 |
Tab. 6 Parameters sensitivity analysis
函数 | β=0.1 | β=0.2 | β=0.3 | β=0.4 | β=0.5 | β=0.6 | β=0.7 | β=0.8 | β=0.9 |
---|---|---|---|---|---|---|---|---|---|
F1 | 3.69E+03 | 3.07E+03 | 3.56E+03 | 3.63E+03 | 2.93E+03 | 2.84E+03 | 3.71E+03 | 3.26E+03 | 2.89E+03 |
F2 | 1.98E+03 | 2.03E+03 | 1.98E+03 | 2.01E+03 | 2.02E+03 | 1.97E+03 | 2.02E+03 | 2.00E+03 | 1.98E+03 |
F3 | 7.48E+02 | 7.47E+02 | 7.48E+02 | 7.48E+02 | 7.46E+02 | 7.47E+02 | 7.42E+02 | 7.49E+02 | 7.44E+02 |
F4 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 |
F5 | 1.91E+03 | 1.87E+03 | 1.88E+03 | 1.90E+03 | 1.87E+03 | 1.86E+03 | 1.90E+03 | 1.90E+03 | 1.92E+03 |
F6 | 1.73E+03 | 1.72E+03 | 1.71E+03 | 1.68E+03 | 1.71E+03 | 1.70E+03 | 1.70E+03 | 1.71E+03 | 1.70E+03 |
F7 | 2.12E+03 | 2.12E+03 | 2.12E+03 | 2.12E+03 | 2.12E+03 | 2.11E+03 | 2.12E+03 | 2.12E+03 | 2.13E+03 |
F8 | 2.30E+03 | 2.30E+03 | 2.31E+03 | 2.30E+03 | 2.30E+03 | 2.30E+03 | 2.31E+03 | 2.30E+03 | 2.31E+03 |
F9 | 2.74E+03 | 2.74E+03 | 2.75E+03 | 2.75E+03 | 2.74E+03 | 2.74E+03 | 2.75E+03 | 2.73E+03 | 2.75E+03 |
F10 | 2.92E+03 | 2.92E+03 | 2.92E+03 | 2.92E+03 | 2.93E+03 | 2.92E+03 | 2.92E+03 | 2.91E+03 | 2.92E+03 |
算法 | h | l | t | b | 成本 |
---|---|---|---|---|---|
MROA | 0.205 740 | 3.253000 | 9.036 600 | 0.205 730 | 1.695200 |
ROA | 0.200 077 | 3.365 754 | 9.011 182 | 0.206 893 | 1.706 447 |
MFO | 0.205 700 | 3.470 300 | 9.036 400 | 0.205 700 | 1.724 520 |
GWO | 0.205 676 | 3.478 377 | 9.036 810 | 0.205 778 | 1.726 240 |
MVO | 0.205 463 | 3.473 193 | 9.044 502 | 0.205 695 | 1.726 450 |
WOA | 0.205 396 | 3.484 293 | 9.037 426 | 0.206 276 | 1.730 499 |
CPSO | 0.202 369 | 3.544 214 | 9.048 210 | 0.205 723 | 1.731 480 |
RO | 0.203 687 | 3.528 467 | 9.004 233 | 0.207 241 | 1.735 344 |
Tab. 7 Experimental results of different algorithms in welded beam design problem
算法 | h | l | t | b | 成本 |
---|---|---|---|---|---|
MROA | 0.205 740 | 3.253000 | 9.036 600 | 0.205 730 | 1.695200 |
ROA | 0.200 077 | 3.365 754 | 9.011 182 | 0.206 893 | 1.706 447 |
MFO | 0.205 700 | 3.470 300 | 9.036 400 | 0.205 700 | 1.724 520 |
GWO | 0.205 676 | 3.478 377 | 9.036 810 | 0.205 778 | 1.726 240 |
MVO | 0.205 463 | 3.473 193 | 9.044 502 | 0.205 695 | 1.726 450 |
WOA | 0.205 396 | 3.484 293 | 9.037 426 | 0.206 276 | 1.730 499 |
CPSO | 0.202 369 | 3.544 214 | 9.048 210 | 0.205 723 | 1.731 480 |
RO | 0.203 687 | 3.528 467 | 9.004 233 | 0.207 241 | 1.735 344 |
算法 | ri | ro | t | F | Z | 质量 |
---|---|---|---|---|---|---|
MROA | 70.000 00 | 90.000 0 | 1 | 600.000 0 | 2.000 | 0.235240 000 |
ROA | 69.958 38 | 90.000 0 | 1 | 600.000 0 | 2.000 | 0.235 670 000 |
TLBO | 70.000 00 | 90.000 0 | 1 | 810.000 0 | 3.000 | 0.313 656 611 |
WCA | 70.000 00 | 90.000 0 | 1 | 910.000 0 | 3.000 | 0.313 656 000 |
MVO | 70.000 00 | 90.000 0 | 1 | 910.000 0 | 3.000 | 0.313 656 000 |
CMVO | 70.000 00 | 90.000 0 | 1 | 910.000 0 | 3.000 | 0.313 656 000 |
MFO | 70.000 00 | 90.000 0 | 1 | 910.000 0 | 3.000 | 0.313 656 000 |
RSA | 70.034 7 | 90.034 9 | 1 | 801.728 5 | 2.974 | 0.311 760 000 |
Tab. 8 Experimental results of different algorithms in multip-plate clutch brake design problem
算法 | ri | ro | t | F | Z | 质量 |
---|---|---|---|---|---|---|
MROA | 70.000 00 | 90.000 0 | 1 | 600.000 0 | 2.000 | 0.235240 000 |
ROA | 69.958 38 | 90.000 0 | 1 | 600.000 0 | 2.000 | 0.235 670 000 |
TLBO | 70.000 00 | 90.000 0 | 1 | 810.000 0 | 3.000 | 0.313 656 611 |
WCA | 70.000 00 | 90.000 0 | 1 | 910.000 0 | 3.000 | 0.313 656 000 |
MVO | 70.000 00 | 90.000 0 | 1 | 910.000 0 | 3.000 | 0.313 656 000 |
CMVO | 70.000 00 | 90.000 0 | 1 | 910.000 0 | 3.000 | 0.313 656 000 |
MFO | 70.000 00 | 90.000 0 | 1 | 910.000 0 | 3.000 | 0.313 656 000 |
RSA | 70.034 7 | 90.034 9 | 1 | 801.728 5 | 2.974 | 0.311 760 000 |
1 | 贾鹤鸣,李瑶,孙康健. 基于遗传乌燕鸥算法的同步优化特征选择[J]. 自动化学报, 2022, 48(6):1601-1615. |
JIA H M, LI Y, SUN K J. Simultaneous feature selection optimization based on hybrid sooty tern optimization algorithm and genetic algorithm[J]. Acta Automatica Sinica, 2022, 48(6):1601-1615. | |
2 | 贾鹤鸣,姜子超,李瑶. 基于改进秃鹰搜索算法的同步优化特征选择[J]. 控制与决策, 2022, 37(2):445-454. |
JIA H M, JIANG Z C, LI Y. Simultaneous feature selection optimization based on improved bald eagle search algorithm[J]. Control and Decision, 2022, 37(2): 445-454. | |
3 | WOLPERT D H, MACREADY W G. No free lunch theorems for optimization [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. 10.1109/4235.585893 |
4 | MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems [J]. Knowledge-Based Systems, 2016, 96: 120-133. 10.1016/j.knosys.2015.12.022 |
5 | MIRJALILI S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm [J]. Knowledge-Based Systems, 2015, 89: 228-249. 10.1016/j.knosys.2015.07.006 |
6 | MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. 10.1016/j.advengsoft.2016.01.008 |
7 | DHIMAN G, KAUR A. STOA: a bio-inspired based optimization algorithm for industrial engineering problems[J]. Engineering Applications of Artificial Intelligence, 2019, 82: 148-174. 10.1016/j.engappai.2019.03.021 |
8 | HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. 10.1016/j.future.2019.02.028 |
9 | LI S M, CHEN H L, WANG M J, et al. Slime mould algorithm: a new method for stochastic optimization[J]. Future Generation Computer Systems, 2020, 111: 300-323. 10.1016/j.future.2020.03.055 |
10 | SHEHADEH H A, AHMEDY I, IDRIS M Y I. Sperm swarm optimization algorithm for optimizing wireless sensor network challenges [C]// Proceedings of the 6th International Conference on Communications and Broadband Networking. New York: ACM, 2018: 53-59. 10.1145/3193092.3193100 |
11 | ABUALIGAH L, ELAZIZ M A, SUMARI P, et al. Reptile Search Algorithm (RSA): a novel nature-inspired meta-heuristic optimizer[J]. Expert Systems with Applications, 2022, 191: No.116158. 10.1016/j.eswa.2021.116158 |
12 | 高昊,张庆科,卜降龙,等. 基于协同变异与莱维飞行策略的教与学优化算法及其应用[J]. 计算机应用,2023,43(5):1355-1364. |
GAO H, ZHANG Q K, BU X L, et al. Teaching-learning-based optimization algorithm based on co-mutation and Lévy flight strategy and its application [J]. Journal of Computer Applications, 2023,43(5):1355-1364. | |
13 | JIA H M, PENG X X, LANG C B. Remora optimization algorithm[J]. Expert Systems with Applications, 2021, 185: No.115665. 10.1016/j.eswa.2021.115665 |
14 | ZHENG R, JIA H M, ABUALIGAH L, et al. An improved remora optimization algorithm with autonomous foraging mechanism for global optimization problems[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 3994-4037. 10.3934/mbe.2022184 |
15 | LIU Q X, LI N, JIA H M, et al. Modified remora optimization algorithm for global optimization and multilevel thresholding image segmentation [J]. Mathematics, 2022, 10(7): No.1014. 10.3390/math10071014 |
16 | MIRJALILI S, GANDOMI A. Chaotic gravitational constants for the gravitational search algorithm[J]. Applied Soft Computing, 2017, 53: 407-419. 10.1016/j.asoc.2017.01.008 |
17 | 滕志军,吕金玲,郭力文,等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报, 2018, 50(11):40-49. 10.11918/j.issn.0367-6234.201806096 |
TENG Z J, LYU J L, GUO L W, et al. An improved hybrid grey wolf optimization algorithm based on Tent mapping[J]. Journal of Harbin Institute of Technology, 2018, 50(11): 40-49. 10.11918/j.issn.0367-6234.201806096 | |
18 | 周鹏,董朝轶,陈晓艳,等. 基于阶梯式Tent混沌和模拟退火的樽海鞘群算法[J]. 电子学报, 2021, 49(9):1724-1735. 10.12263/DZXB.20200593 |
ZHOU P, DONG C Y, CHEN X Y, et al. A salp swarm algorithm based on stepped tent chaos and simulated annealing[J]. Acta Electronica Sinica, 2021, 49(9): 1724-1735. 10.12263/DZXB.20200593 | |
19 | HASHIM F A, HUSSIEN A G. Snake optimizer: a novel meta-heuristic optimization algorithm[J]. Knowledge-Based Systems, 2022, 242: No.108320. 10.1016/j.knosys.2022.108320 |
20 | 贾鹤鸣,刘庆鑫,刘宇翔,等. 融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法[J]. 智能系统学报, 2023, 18(1):104-116. 10.11992/tis.202108031 |
JIA H M, LIU Q X, LIU Y X, et al. Hybrid Aquila and Harris hawks optimization algorithm with dynamic opposition-based learning[J]. CAAI Transactions on Intelligent Systems, 2023, 18(1):104-116. 10.11992/tis.202108031 | |
21 | 邱仲睿,苗虹,曾成碧. 多策略融合的改进黏菌算法[J]. 计算机应用,2023,43(3):812-819. |
QIU Z R, MIAO H, ZENG C B. Improved slime mould algorithm with multi-strategy fusion[J]. Journal of Computer Applications, 2023,43(3):812-819. |
[1] | Shanglong LI, Jianhua LIU, Heming JIA. Reptile search algorithm based on multi-hunting coordination strategy [J]. Journal of Computer Applications, 2024, 44(9): 2818-2828. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||