Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (6): 1750-1758.DOI: 10.11772/j.issn.1001-9081.2022060952
Special Issue: CCF第37届中国计算机应用大会 (CCF NCCA 2022)
• The 37 CCF National Conference of Computer Applications (CCF NCCA 2022) • Previous Articles Next Articles
Received:
2022-06-30
Revised:
2022-10-24
Accepted:
2022-10-26
Online:
2022-11-16
Published:
2023-06-10
Contact:
Hui WANG
About author:
LI Jianhong, born in 1995, M. S. Her research interests include computer graphics, artificial intelligence.
Supported by:
通讯作者:
王辉
作者简介:
王辉(1983—),男,河北石家庄人,副教授,博士,CCF会员,主要研究方向:计算机图形学、人工智能Email:wangh@stdu.edu.cn基金资助:
CLC Number:
Hui WANG, Jianhong LI. Few-shot recognition method of 3D models based on Transformer[J]. Journal of Computer Applications, 2023, 43(6): 1750-1758.
王辉, 李建红. 基于Transformer的三维模型小样本识别方法[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1750-1758.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022060952
采样 点数 | ModelNet 40 | ShapeNet Core.v2 | ShapeNet Core_normal | |||
---|---|---|---|---|---|---|
3-way | 5-way | 3-way | 5-way | 3-way | 5-way | |
256 | 83.28 | 78.25 | 80.12 | 79.06 | 85.99 | 80.86 |
512 | 86.59 | 79.06 | 80.28 | 79.63 | 96.05 | 84.39 |
1 024 | 87.37 | 80.86 | 81.75 | 81.51 | 83.96 | 82.25 |
2 048 | 87.21 | 81.32 | 80.63 | 79.96 | 78.68 | 81.01 |
Tab. 1 Accuracy of 1-shot experiments at different sampling point numbers
采样 点数 | ModelNet 40 | ShapeNet Core.v2 | ShapeNet Core_normal | |||
---|---|---|---|---|---|---|
3-way | 5-way | 3-way | 5-way | 3-way | 5-way | |
256 | 83.28 | 78.25 | 80.12 | 79.06 | 85.99 | 80.86 |
512 | 86.59 | 79.06 | 80.28 | 79.63 | 96.05 | 84.39 |
1 024 | 87.37 | 80.86 | 81.75 | 81.51 | 83.96 | 82.25 |
2 048 | 87.21 | 81.32 | 80.63 | 79.96 | 78.68 | 81.01 |
数据集 | 3-way | 5-way |
---|---|---|
ModelNet 40 | 87.37 | 80.86 |
ShapeNet Core.v2 | 81.75 | 81.51 |
ShapeNet Core_normal | 83.96 | 82.25 |
Tab. 2 Accuracies of the proposed method of 1-shot experiments on ModelNet 40 and ShapeNet Core datasets
数据集 | 3-way | 5-way |
---|---|---|
ModelNet 40 | 87.37 | 80.86 |
ShapeNet Core.v2 | 81.75 | 81.51 |
ShapeNet Core_normal | 83.96 | 82.25 |
数据集 | K=1 | K=2 | K=5 | K=10 |
---|---|---|---|---|
ModelNet 40 | 80.86 | 81.25 | 83.77 | 84.21 |
ShapeNet Core_normal | 82.25 | 83.96 | 85.31 | 85.76 |
Tab. 3 Accuracies of 5-way K-shot experiments on ModelNet 40 and ShapeNet Core_normal datasets
数据集 | K=1 | K=2 | K=5 | K=10 |
---|---|---|---|---|
ModelNet 40 | 80.86 | 81.25 | 83.77 | 84.21 |
ShapeNet Core_normal | 82.25 | 83.96 | 85.31 | 85.76 |
数据集 | |||||
---|---|---|---|---|---|
ShapeNet Core.v2 | 79.33 | 82.32 | 80.57 | 79.18 | 79.62 |
ShapeNet Core_normal | 80.44 | 85.31 | 83.75 | 81.64 | 81.28 |
ModelNet 40 | 78.53 | 83.77 | 81.19 | 80.43 | 80.01 |
Tab. 4 Recognition accuracies at different λ values
数据集 | |||||
---|---|---|---|---|---|
ShapeNet Core.v2 | 79.33 | 82.32 | 80.57 | 79.18 | 79.62 |
ShapeNet Core_normal | 80.44 | 85.31 | 83.75 | 81.64 | 81.28 |
ModelNet 40 | 78.53 | 83.77 | 81.19 | 80.43 | 80.01 |
方法 | 5-way | 10-way | ||
---|---|---|---|---|
10-shot | 20-shot | 10-shot | 20-shot | |
DGCNN+cTree[ | 60.00 | 65.70 | 48.50 | 53.00 |
PointNet+cTree[ | 63.20 | 68.90 | 49.20 | 50.10 |
PointNet+Jigsaw[ | 66.50 | 69.20 | 56.90 | 66.50 |
本文方法 | 84.21 | 81.53 | 80.32 | 80.75 |
Tab. 5 Few-shot recognition accuracies of different deep learning methods on ModelNet 40 dataset
方法 | 5-way | 10-way | ||
---|---|---|---|---|
10-shot | 20-shot | 10-shot | 20-shot | |
DGCNN+cTree[ | 60.00 | 65.70 | 48.50 | 53.00 |
PointNet+cTree[ | 63.20 | 68.90 | 49.20 | 50.10 |
PointNet+Jigsaw[ | 66.50 | 69.20 | 56.90 | 66.50 |
本文方法 | 84.21 | 81.53 | 80.32 | 80.75 |
方法 | 5-way 1-shot | 5-way 5-shot |
---|---|---|
Dual-LSTM[ | 46.32 | 62.77 |
关系网络 | 70.27 | 72.13 |
无Transformer网络 | 35.56 | 36.92 |
本文方法 | 80.86 | 83.77 |
Tab. 6 Five-way accuracies of different few-shot recognition methods of 3D models on ModelNet 40 dataset
方法 | 5-way 1-shot | 5-way 5-shot |
---|---|---|
Dual-LSTM[ | 46.32 | 62.77 |
关系网络 | 70.27 | 72.13 |
无Transformer网络 | 35.56 | 36.92 |
本文方法 | 80.86 | 83.77 |
1 | WANG Y K, XU C M, LIU C, et al. Instance credibility inference for few-shot learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12833-12842. 10.1109/cvpr42600.2020.01285 |
2 | 赵凯琳,靳小龙,王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2): 349-369. 10.13328/j.cnki.jos.006138 |
ZHAO K L, JIN X L, WANG Y Z. Survey on few-shot learning [J]. Journal of Software, 2021, 32(2): 349-369. 10.13328/j.cnki.jos.006138 | |
3 | YANG J C, GUO X L, LI Y, et al. A survey of few-shot learning in smart agriculture: developments, applications, and challenges [J]. Plant Methods, 2022, 18: No.28. 10.1186/s13007-022-00866-2 |
4 | SA L B, YU C C, MA X Q, et al. Attentive fine-grained recognition for cross-domain few-shot classification[J]. Neural Computing and Applications, 2022, 34(6): 4733-4746. 10.1007/s00521-021-06627-x |
5 | 孙文赟,金忠,赵海涛,等. 基于深度特征增广的跨域小样本人脸欺诈检测算法[J]. 计算机科学, 2021, 48(2): 330-336. 10.11896/jsjkx.200100020 |
SUN W Y, JIN Z, ZHAO H T, et al. Cross-domain few-shot face spoofing detection method based on deep feature augmentation [J]. Computer Science, 2021, 48(2): 330-336. 10.11896/jsjkx.200100020 | |
6 | SHOME D, KAR T. FedAffect: few-shot federated learning for facial expression recognition[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4151-4158. 10.1109/iccvw54120.2021.00463 |
7 | 尹力,周琪. 基于小样本数据和深度残差网络的月度供电量预测研究[J]. 计算机与数字工程, 2022, 50(2): 448-452. 10.3969/j.issn.1672-9722.2022.02.042 |
YIN L, ZHOU Q. Research on monthly power supply forecasting based on small sample data and deep residual network [J]. Computer and Digital Engineering, 2022, 50(2): 448-452. 10.3969/j.issn.1672-9722.2022.02.042 | |
8 | 董阳,潘海为,崔倩娜,等. 面向多模态磁共振脑瘤图像的小样本分割方法[J]. 计算机应用, 2021, 41(4): 1049-1054. 10.11772/j.issn.1001-9081.2020081388 |
DONG Y, PAN H W, CUI Q N, et al. Few-shot segmentation method for multi-modal magnetic resonance images of brain tumor [J]. Journal of Computer Applications, 2021, 41(4): 1049-1054. 10.11772/j.issn.1001-9081.2020081388 | |
9 | 刘颖,雷研博,范九伦,等. 基于小样本学习的图像分类技术综述[J]. 自动化学报, 2021, 47(2): 297-315. 10.16383/j.aas.c190720 |
LIU Y, LEI Y B, FAN J L, et al. Survey on image classification technology based on small sample learning [J]. Acta Automatica Sinica, 2021, 47(2): 297-315. 10.16383/j.aas.c190720 | |
10 | MA J W, XIE H C, HAN G X, et al. Partner-assisted learning for few-shot image classification [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10553-10562. 10.1109/iccv48922.2021.01040 |
11 | YANG F Y, WANG R P, CHEN X L. SEGA: semantic guided attention on visual prototype for few-shot learning [C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1586-1596. 10.1109/wacv51458.2022.00165 |
12 | WERTHEIMER D, TANG L, HARIHARAN B. Few-shot classification with feature map reconstruction networks[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8012-8021. 10.1109/cvpr46437.2021.00792 |
13 | ADAMKIEWICZ M, CHEN T, CACCAVALE A, et al. Vision-only robot navigation in a neural radiance world[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4606-4613. 10.1109/lra.2022.3150497 |
14 | 王贺鹏,李志斌,王立. 自动驾驶仿真的虚拟交通信号系统分析及实现[J]. 汽车实用技术, 2020(7): 34-37. |
WANG H P, LI Z B, WANG L. Analysis and implementation of virtual traffic signal system for autopilot simulation[J]. Automobile Applied Technology, 2020(7): 34-37. | |
15 | 陈涛,丘恩华,孔吉宏,等. 基于CAD的虚拟现实技术在水电站仿真系统的应用[J]. 计算机与数字工程, 2021, 49(4): 856-861. 10.3969/j.issn.1672-9722.2021.04.047 |
CHEN T, QIU E H, KONG J H, et al. Application of virtual reality technology based on CAD in hydropower station simulation system [J]. Computer and Digital Engineering, 2021, 49(4): 856-861. 10.3969/j.issn.1672-9722.2021.04.047 | |
16 | NIE J, XU N, ZHOU M, et al. 3D model classification based on few-shot learning [J]. Neurocomputing, 2020, 398: 539-546. 10.1016/j.neucom.2019.03.105 |
17 | WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1912-1920. 10.1109/cvpr.2015.7298801 |
18 | DENG Y, YANG J L, TONG X. Deformed implicit field: modeling 3D shapes with learned dense correspondence[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10281-10291. 10.1109/cvpr46437.2021.01015 |
19 | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 5105-5114. |
20 | LIU B, KANG H, LI H X, et al. Few-shot open-set recognition using meta-learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8795-8804. 10.1109/cvpr42600.2020.00882 |
21 | BAIK S, CHOI M, CHOI J, et al. Meta-learning with adaptive hyperparameters[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 20755-20765. |
22 | BAIK S, HONG S, LEE K M. Learning to forget for meta-learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2376-2384. 10.1109/cvpr42600.2020.00245 |
23 | BAIK S, CHOI J, KIM H, et al. Meta-learning with task-adaptive loss function for few-shot learning [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9445-9454. 10.1109/iccv48922.2021.00933 |
24 | GIDARIS S, KOMODAKIS N. Dynamic few-shot visual learning without forgetting[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4367-4375. 10.1109/cvpr.2018.00459 |
25 | GIDARIS S, KOMODAKIS N. Generating classification weights with GNN Denoising Autoencoders for few-shot learning[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 21-30. 10.1109/cvpr.2019.00011 |
26 | HARIHARAN B, GIRSHICK R. Low-shot visual recognition by shrinking and hallucinating features [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3037-3046. 10.1109/iccv.2017.328 |
27 | MUNKHDALAI T, YUAN X D, MEHRI S. Rapid adaptation with conditionally shifted neurons[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 3664-3673. |
28 | SCHWARTZ E, KARLINSKY L, SHTOK J, et al. Δ-encoder: an effective sample synthesis method for few-shot object recognition[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 2850-2860. |
29 | GARCIA V, BRUNA J. Few-shot learning with graph neural networks[EB/OL]. (2018-02-20) [2022-04-12].. |
30 | YANG L, LI L L, ZHANG Z L, et al. DPGN: distribution propagation graph network for few-shot learning [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13387-13396. 10.1109/cvpr42600.2020.01340 |
31 | HAN X F, LEUNG T, JIA Y Q, et al. MatchNet: unifying feature and metric learning for patch-based matching [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3279-3286. 10.1109/cvpr.2015.7298948 |
32 | LI W B, WANG L, XU J L, et al. Revisiting local descriptor based image-to-class measure for few-shot learning[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7253-7260. 10.1109/cvpr.2019.00743 |
33 | LI H Y, EIGEN D, DODGE S, et al. Finding task-relevant features for few-shot learning by category traversal[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1-10. 10.1109/cvpr.2019.00009 |
34 | QI C R, SU H, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. 10.1109/cvpr.2017.16 |
35 | REN M Y, TRIANTAFILLOU E, RAVI S, et al. Meta-learning for semi-supervised few-shot classification[EB/OL]. (2018-03-02) [2022-04-12]. . |
36 | SUNG F, YANG Y X, ZHANG L, et al. Learning to compare: relation network for few-shot learning [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1199-1208. 10.1109/cvpr.2018.00131 |
37 | TANG S X, CHEN D P, BAI L, et al. Mutual CRF-GNN for few-shot learning [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2329-2339. 10.1109/cvpr46437.2021.00236 |
38 | DOERSCH C, GUPTA A, ZISSERMAN A. CrossTransformers: spatially-aware few-shot transfer[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020:21981-21993. |
39 | YE H J, HU H X, ZHAN D C, et al. Few-shot learning via embedding adaptation with set-to-set functions [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8805-8814. 10.1109/cvpr42600.2020.00883 |
40 | SHARMA C, KAUL M. Self-supervised few-shot learning on point clouds [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 7212-7221. |
41 | SAUDER J, SIEVERS B. Self-supervised deep learning on point clouds by reconstructing space[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 12962-12972. |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[9] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[10] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[15] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||