Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (11): 3396-3402.DOI: 10.11772/j.issn.1001-9081.2022101552
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
					
						                                                                                                                                                                                                                    Weigang LI1,2, Ting CHEN1( ), Zhiqiang TIAN1
), Zhiqiang TIAN1
												  
						
						
						
					
				
Received:2022-10-20
															
							
																	Revised:2023-02-03
															
							
																	Accepted:2023-02-08
															
							
							
																	Online:2023-04-12
															
							
																	Published:2023-11-10
															
							
						Contact:
								Ting CHEN   
													About author:LI Weigang, born in 1977, Ph. D., professor. His research interests include industrial process control, artificial intelligence, machine learning.Supported by:通讯作者:
					陈婷
							作者简介:李维刚(1977—),男,湖北咸宁人,教授,博士,主要研究方向:工业过程控制、人工智能、机器学习基金资助:CLC Number:
Weigang LI, Ting CHEN, Zhiqiang TIAN. Point cloud classification and segmentation based on Siamese adaptive graph convolution algorithm[J]. Journal of Computer Applications, 2023, 43(11): 3396-3402.
李维刚, 陈婷, 田志强. 基于孪生自适应图卷积算法的点云分类与分割[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3396-3402.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022101552
| 方法 | OA/% | mAcc/% | GFLOPs | 推理速度/(sample·s-1) | 
|---|---|---|---|---|
| PointNet[ | 68.20 | 63.40 | 0.45 | — | 
| SpiderCNN[ | 73.70 | 69.80 | — | — | 
| PointNet++[ | 77.90 | 75.40 | 0.87 | 120.35* | 
| DGCNN[ | 78.10 | 73.60 | 2.43 | — | 
| PointCNN[ | 78.50 | 75.10 | — | — | 
| DRNet[ | 80.30 | 78.00 | — | — | 
| MVTN+SimpleView++[ | 84.80 | — | — | — | 
| Point-MAE[ | 85.20 | — | — | — | 
| PointMLP[ | 85.70 | 84.40 | — | — | 
| RepSurf-U‡[ | 86.00 | 83.10 | 2.45 | 92.79* | 
| LSAGCA-PointNet++ | 79.89 | 78.20 | 3.71 | 70.94 | 
| GSAGCA-PointNet++ | 79.89 | 77.78 | 0.91 | 104.15 | 
| LSAGCA-RepSurf-U‡ | 86.40 | 84.93 | 11.68 | 56.66 | 
| GSAGCA-RepSurf-U‡ | 86.50 | 85.69 | 2.87 | 84.78 | 
Tab. 1 Classification performance comparison of different methods on ScanObjectNN dataset
| 方法 | OA/% | mAcc/% | GFLOPs | 推理速度/(sample·s-1) | 
|---|---|---|---|---|
| PointNet[ | 68.20 | 63.40 | 0.45 | — | 
| SpiderCNN[ | 73.70 | 69.80 | — | — | 
| PointNet++[ | 77.90 | 75.40 | 0.87 | 120.35* | 
| DGCNN[ | 78.10 | 73.60 | 2.43 | — | 
| PointCNN[ | 78.50 | 75.10 | — | — | 
| DRNet[ | 80.30 | 78.00 | — | — | 
| MVTN+SimpleView++[ | 84.80 | — | — | — | 
| Point-MAE[ | 85.20 | — | — | — | 
| PointMLP[ | 85.70 | 84.40 | — | — | 
| RepSurf-U‡[ | 86.00 | 83.10 | 2.45 | 92.79* | 
| LSAGCA-PointNet++ | 79.89 | 78.20 | 3.71 | 70.94 | 
| GSAGCA-PointNet++ | 79.89 | 77.78 | 0.91 | 104.15 | 
| LSAGCA-RepSurf-U‡ | 86.40 | 84.93 | 11.68 | 56.66 | 
| GSAGCA-RepSurf-U‡ | 86.50 | 85.69 | 2.87 | 84.78 | 
| 方法 | IoU/% | GFLOPs | 推理速度/(sample·s-1) | |
|---|---|---|---|---|
| 实例平均 | 类别平均 | |||
| PointNet[ | 83.70 | — | 4.10 | — | 
| SPLATNet 3D[ | 84.60 | 82.00 | — | — | 
| SSCNN[ | 84.70 | 82.00 | — | — | 
| 3D-GCN[ | 85.10 | 82.10 | — | — | 
| Point-PlaneNet[ | 85.10 | 82.50 | — | — | 
| DGCNN[ | 85.20 | — | — | — | 
| SpiderCNN[ | 85.30 | 82.40 | — | — | 
| PointNet++(msg)[ | 85.10 | 81.90 | 4.92* | 69.98* | 
| LSAGCA-PointNet++ | 85.42 | 84.08 | 15.06 | 51.07 | 
| GSAGCA-PointNet++ | 85.43 | 84.21 | 5.02 | 68.66 | 
Tab. 2 Object part segmentation performance comparison of different methods on ShapeNetPart dataset
| 方法 | IoU/% | GFLOPs | 推理速度/(sample·s-1) | |
|---|---|---|---|---|
| 实例平均 | 类别平均 | |||
| PointNet[ | 83.70 | — | 4.10 | — | 
| SPLATNet 3D[ | 84.60 | 82.00 | — | — | 
| SSCNN[ | 84.70 | 82.00 | — | — | 
| 3D-GCN[ | 85.10 | 82.10 | — | — | 
| Point-PlaneNet[ | 85.10 | 82.50 | — | — | 
| DGCNN[ | 85.20 | — | — | — | 
| SpiderCNN[ | 85.30 | 82.40 | — | — | 
| PointNet++(msg)[ | 85.10 | 81.90 | 4.92* | 69.98* | 
| LSAGCA-PointNet++ | 85.42 | 84.08 | 15.06 | 51.07 | 
| GSAGCA-PointNet++ | 85.43 | 84.21 | 5.02 | 68.66 | 
| 方法 | mIoU/% | GFLOPs | 推理速度/(sample·s-1) | 
|---|---|---|---|
| PointNet[ | 41.10 | 4.10 | — | 
| SegCloud[ | 48.90 | — | — | 
| DeepGCN[ | 52.49 | — | — | 
| PointNet++[ | 52.70* | 0.80* | 43.84* | 
| 3D-GCN[ | 53.40 | — | — | 
| LSAGCA-PointNet++ | 54.76 | 3.44 | 34.76 | 
| GSAGCA-PointNet++ | 55.10 | 1.14 | 41.28 | 
Tab. 3 Scene semantic segmentation performance comparison of different methods on S3DIS-Area5 dataset
| 方法 | mIoU/% | GFLOPs | 推理速度/(sample·s-1) | 
|---|---|---|---|
| PointNet[ | 41.10 | 4.10 | — | 
| SegCloud[ | 48.90 | — | — | 
| DeepGCN[ | 52.49 | — | — | 
| PointNet++[ | 52.70* | 0.80* | 43.84* | 
| 3D-GCN[ | 53.40 | — | — | 
| LSAGCA-PointNet++ | 54.76 | 3.44 | 34.76 | 
| GSAGCA-PointNet++ | 55.10 | 1.14 | 41.28 | 
| 方法 | 是否共享卷积的权重 | mIoU | 
|---|---|---|
| PointNet++基准网络 | 否 | 52.70* | 
| LAGCA | 否 | 52.30 | 
| LAGCA | 是 | 54.76 | 
| GAGCA | 否 | 53.46 | 
| GAGCA | 是 | 55.10 | 
Tab. 4 Experimental results of ablation on S3DIS-Area5 dataset
| 方法 | 是否共享卷积的权重 | mIoU | 
|---|---|---|
| PointNet++基准网络 | 否 | 52.70* | 
| LAGCA | 否 | 52.30 | 
| LAGCA | 是 | 54.76 | 
| GAGCA | 否 | 53.46 | 
| GAGCA | 是 | 55.10 | 
| 1 | 李朝,兰海,魏宪. 基于注意力的毫米波-激光雷达融合目标检测[J]. 计算机应用, 2021, 41(7): 2137-2144. 10.11772/j.issn.1001-9081.2020081334 | 
| LI C, LAN H, WEI X. Attention-based object detection with millimeter wave radar-lidar fusion[J]. Journal of Computer Applications, 2021, 41(7): 2137-2144. 10.11772/j.issn.1001-9081.2020081334 | |
| 2 | 付豪,徐和根,张志明,等. 动态场景下基于语义和光流约束的视觉同步定位与地图构建[J]. 计算机应用, 2021, 41(11): 3337-3344. 10.11772/j.issn.1001-9081.2021010003 | 
| FU H, XU H G, ZHANG Z M, et al. Visual simultaneous localization and mapping based on semantic and optical flow constraints in dynamic scenes[J]. Journal of Computer Applications, 2021, 41(11): 3337-3344. 10.11772/j.issn.1001-9081.2021010003 | |
| 3 | FAN T, ZHANG R. Research on automatic lane line extraction method based on onboard lidar point cloud data[C]// Proceedings of the SPIE 12306, 2nd International Conference on Digital Signal and Computer Communications. Bellingham, WA: SPIE, 2022: No.123060P. 10.1117/12.2641593 | 
| 4 | MIRZAEI K, ARASHPOUR M, ASADI E, et al. 3D point cloud data processing with machine learning for construction and infrastructure applications: a comprehensive review[J]. Advanced Engineering Informatics, 2022, 51: No.101501. 10.1016/j.aei.2021.101501 | 
| 5 | XU Y, FAN T, XU M, et al. SpiderCNN: deep learning on point sets with parameterized convolutional filters[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11212. Cham: Springer, 2018: 90-105. | 
| 6 | LI Y, BU R, SUN M, et al. PointCNN: convolution on X-transformed points[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 828-838. | 
| 7 | QIU S, ANWAR S, BARNES N. Dense-resolution network for point cloud classification and segmentation[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3812-3821. 10.1109/wacv48630.2021.00386 | 
| 8 | 史怡,魏东,宋强,等. 基于动态图卷积和离散哈特莱转换差异性池化的点云数据分类分割网络[J]. 计算机应用, 2022, 42(S1): 292-297. | 
| SHI Y, WEI D, SONG Q, et al. Point cloud data classification and segmentation network based on dynamic graph convolution and discrete Hartley transform different pooling[J]. Journal of Computer Applications, 2021, 42(S1): 292-297. | |
| 9 | SU H, JAMPANI V, SUN D, et al. SPLATNet: sparse lattice networks for point cloud processing[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2530-2539. 10.1109/cvpr.2018.00268 | 
| 10 | YI L, SU H, GUO X, et al. SyncSpecCNN: synchronized spectral CNN for 3D shape segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6584-6592. 10.1109/cvpr.2017.697 | 
| 11 | PEYGHAMBARZADEH S M M, AZIZMALAYERI F, KHOTANLOU H, et al. Point-PlaneNet: plane kernel based convolutional neural network for point clouds analysis[J]. Digital Signal Processing, 2020, 98: No.102633. 10.1016/j.dsp.2019.102633 | 
| 12 | TCHAPMI L, CHOY C, ARMENI I, et al. SEGCloud: semantic segmentation of 3D point clouds[C]// Proceedings of the 2017 International Conference on 3D Vision. Piscataway: IEEE, 2017: 537-547. 10.1109/3dv.2017.00067 | 
| 13 | LIN Z H, HUANG S Y, WANG Y C F. Convolution in the cloud: learning deformable kernels in 3D graph convolution networks for point cloud analysis[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1897-1806. 10.1109/cvpr42600.2020.00187 | 
| 14 | ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4490-4499. 10.1109/cvpr.2018.00472 | 
| 15 | SHESHAPPANAVAR S V, KAMBHAMETTU C. SimpleView++: neighborhood views for point cloud classification[C]// Proceedings of the IEEE 5th International Conference on Multimedia Information Processing and Retrieval. Piscataway: IEEE, 2022: 31-34. 10.1109/mipr54900.2022.00013 | 
| 16 | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. 10.1109/cvpr.2017.16 | 
| 17 | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 5105-5114. | 
| 18 | WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): No.146. 10.1145/3326362 | 
| 19 | QIAN G, LI Y, PENG H, et al. PointNeXt: revisiting PointNet++ with improved training and scaling strategies[EB/OL]. (2022-10-12) [2022-12-29].. | 
| 20 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. | 
| 21 | RAN H, LIU J, WANG C. Surface representation for point clouds[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 18942-18952. 10.1109/cvpr52688.2022.01837 | 
| 22 | SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80. 10.1109/tnn.2008.2005605 | 
| 23 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2022-08-24].. 10.48550/arXiv.1609.02907 | 
| 24 | LI G, MÜLLER M, QIAN G, et al. DeepGCNs: making GCNs go as deep as CNNs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(6): 6923-6939. 10.1109/tpami.2021.3074057 | 
| 25 | SHI L, ZHANG Y, CHENG J, et al. Non-local graph convolutional networks for skeleton-based action recognition[EB/OL]. [2022-08-24].. 10.1109/cvpr.2019.01230 | 
| 26 | UY M A, PHAM Q H, HUA B S, et al. Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1588-1597. 10.1109/iccv.2019.00167 | 
| 27 | CHANG A X, FUNKHOUSER T, GUIBAS L, et al. ShapeNet: an information-rich 3D model repository[EB/OL]. [2022-08-25].. | 
| 28 | ARMENI I, SENER O, ZAMIR A R, et al. 3D semantic parsing of large-scale indoor spaces[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1534-1543. 10.1109/cvpr.2016.170 | 
| 29 | PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in PyTorch[EB/OL]. [2023-01-01].. | 
| 30 | PANG Y, WANG W, TAY F E H, et al. Masked autoencoders for point cloud self-supervised learning[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13662. Cham: Springer, 2022: 604-621. | 
| 31 | MA X, QIN C, YOU H, et al. Rethinking network design and local geometry in point cloud: a simple residual MLP framework[EB/OL]. [2023-01-01].. | 
| [1] | Yuxin HUANG, Jialong XU, Zhengtao YU, Shukai HOU, Jiaqi ZHOU. Unsupervised text sentiment transfer method based on generation prompt [J]. Journal of Computer Applications, 2024, 44(9): 2667-2673. | 
| [2] | Ying HUANG, Jiayu YANG, Jiahao JIN, Bangrui WAN. Siamese mixed information fusion algorithm for RGBT tracking [J]. Journal of Computer Applications, 2024, 44(9): 2878-2885. | 
| [3] | Chun SUN, Chunlong HU, Shucheng HUANG. Consistency preserving age estimation method by ensemble ranking [J]. Journal of Computer Applications, 2024, 44(8): 2381-2386. | 
| [4] | Qiangkui LENG, Xuezi SUN, Xiangfu MENG. Oversampling method for imbalanced data based on sample potential and noise evolution [J]. Journal of Computer Applications, 2024, 44(8): 2466-2475. | 
| [5] | Quanmei ZHANG, Runping HUANG, Fei TENG, Haibo ZHANG, Nan ZHOU. Automatic international classification of disease coding method incorporating heterogeneous information [J]. Journal of Computer Applications, 2024, 44(8): 2476-2482. | 
| [6] | Chenqian LI, Jun LIU. Ultrasound carotid plaque segmentation method based on semi-supervision and multi-scale cascaded attention [J]. Journal of Computer Applications, 2024, 44(8): 2604-2610. | 
| [7] | Junchi GE, Weihua ZHAO. Distance weighted discriminant analysis based on robust principal component analysis for matrix data [J]. Journal of Computer Applications, 2024, 44(7): 2073-2079. | 
| [8] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. | 
| [9] | Qianhui LU, Yu ZHANG, Mengling WANG, Tingwei WU, Yuzhong SHAN. Classification model of nuclear power equipment quality text based on improved recurrent pooling network [J]. Journal of Computer Applications, 2024, 44(7): 2034-2040. | 
| [10] | Zhe KONG, Han LI, Shaowei GAN, Mingru KONG, Bingtao HE, Ziyu GUO, Ducheng JIN, Zhaowen QIU. Structure segmentation model for 3D kidney images based on asymmetric multi-decoder and attention module [J]. Journal of Computer Applications, 2024, 44(7): 2216-2224. | 
| [11] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. | 
| [12] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. | 
| [13] | Xun YAO, Zhongzheng QIN, Jie YANG. Generative label adversarial text classification model [J]. Journal of Computer Applications, 2024, 44(6): 1781-1785. | 
| [14] | Yan LI, Dazhi PAN, Siqing ZHENG. Improved adaptive large neighborhood search algorithm for multi-depot vehicle routing problem with time window [J]. Journal of Computer Applications, 2024, 44(6): 1897-1904. | 
| [15] | Zixuan YUAN, Xiaoqing WENG, Ningzhen GE. Early classification model of multivariate time series based on orthogonal locality preserving projection and cost optimization [J]. Journal of Computer Applications, 2024, 44(6): 1832-1841. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||