Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (6): 1832-1841.DOI: 10.11772/j.issn.1001-9081.2023060761
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Zixuan YUAN, Xiaoqing WENG(), Ningzhen GE
Received:
2023-06-16
Revised:
2023-09-20
Accepted:
2023-09-21
Online:
2023-10-09
Published:
2024-06-10
Contact:
Xiaoqing WENG
About author:
YUAN Zixuan, born in 1997, M. S. candidate. Her research interests include data mining, time series analysis.Supported by:
通讯作者:
翁小清
作者简介:
袁子璇(1997—),女,河北石家庄人,硕士研究生,主要研究方向:数据挖掘、时间序列分析基金资助:
CLC Number:
Zixuan YUAN, Xiaoqing WENG, Ningzhen GE. Early classification model of multivariate time series based on orthogonal locality preserving projection and cost optimization[J]. Journal of Computer Applications, 2024, 44(6): 1832-1841.
袁子璇, 翁小清, 戈宁振. 基于正交局部保持映射和成本优化的多变量时间序列早期分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1832-1841.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023060761
数据集 | 变量数 | 样本 最大长度 | 样本 最小长度 | 类别数 | 训练集样本数 | 测试集样本数 |
---|---|---|---|---|---|---|
Wafer | 6 | 198 | 104 | 2 | 298 | 896 |
ECG | 2 | 152 | 39 | 2 | 100 | 100 |
ChT | 3 | 205 | 109 | 20 | 300 | 2 558 |
CMU16 | 62 | 580 | 127 | 2 | 29 | 29 |
Libras | 2 | 45 | 45 | 15 | 180 | 180 |
UWave | 3 | 315 | 315 | 8 | 200 | 4 278 |
Tab. 1 Datasets description
数据集 | 变量数 | 样本 最大长度 | 样本 最小长度 | 类别数 | 训练集样本数 | 测试集样本数 |
---|---|---|---|---|---|---|
Wafer | 6 | 198 | 104 | 2 | 298 | 896 |
ECG | 2 | 152 | 39 | 2 | 100 | 100 |
ChT | 3 | 205 | 109 | 20 | 300 | 2 558 |
CMU16 | 62 | 580 | 127 | 2 | 29 | 29 |
Libras | 2 | 45 | 45 | 15 | 180 | 180 |
UWave | 3 | 315 | 315 | 8 | 200 | 4 278 |
指标 | 数据集 | ||||||||
---|---|---|---|---|---|---|---|---|---|
R1_Cno | OLPPMOAE_Cno | R1_Cno | OLPPMOAE_Cno | R1_Cno | OLPPMOAE_Cno | R1_Cno | OLPPMOAE_Cno | ||
准确率 | Wafer | 0.910 0 | 0.974 3 | 0.910 0 | 0.974 3 | 0.910 0 | 0.974 3 | 0.930 0 | 0.974 3 |
ECG | 0.830 0 | 0.830 0 | 0.820 0 | 0.870 0 | 0.830 0 | 0.880 0 | 0.840 0 | 0.900 0 | |
ChT | 0.880 0 | 0.959 7 | 0.890 0 | 0.959 7 | 0.900 0 | 0.959 7 | 0.920 0 | 0.959 7 | |
CMU16 | 0.740 0 | 0.862 1 | 0.760 0 | 0.862 1 | 0.780 0 | 0.965 5 | 0.810 0 | 0.965 5 | |
Libras | 0.410 0 | 0.605 6 | 0.490 0 | 0.716 7 | 0.600 0 | 0.733 3 | 0.610 0 | 0.750 0 | |
UWave | 0.650 0 | 0.867 0 | 0.720 0 | 0.883 8 | 0.720 0 | 0.884 1 | 0.770 0 | 0.883 6 | |
平均值 | 0.736 7 | 0.849 8 | 0.765 0 | 0.877 8 | 0.790 0 | 0.899 5 | 0.813 3 | 0.905 5 | |
早期性 | Wafer | 0.051 1 | 0.050 0 | 0.051 5 | 0.050 0 | 0.050 7 | 0.050 0 | 0.125 0 | 0.050 0 |
ECG | 0.066 0 | 0.054 0 | 0.097 3 | 0.073 5 | 0.097 0 | 0.136 0 | 0.161 0 | 0.285 0 | |
ChT | 0.238 0 | 0.130 9 | 0.260 4 | 0.130 9 | 0.309 1 | 0.130 9 | 0.367 0 | 0.130 9 | |
CMU16 | 0.084 5 | 0.127 6 | 0.078 4 | 0.127 6 | 0.075 9 | 0.658 6 | 0.077 6 | 0.658 6 | |
Libras | 0.351 3 | 0.351 1 | 0.531 4 | 0.519 2 | 0.851 8 | 0.614 7 | 0.878 1 | 0.802 2 | |
UWave | 0.345 1 | 0.322 7 | 0.394 7 | 0.408 5 | 0.479 8 | 0.408 4 | 0.739 0 | 0.408 4 | |
平均值 | 0.189 3 | 0.172 7 | 0.235 6 | 0.218 3 | 0.310 7 | 0.333 1 | 0.391 3 | 0.389 2 | |
调和均值 | Wafer | 0.929 0 | 0.962 0 | 0.928 9 | 0.962 0 | 0.929 2 | 0.962 0 | 0.901 7 | 0.962 0 |
ECG | 0.878 9 | 0.884 2 | 0.859 4 | 0.897 4 | 0.865 0 | 0.871 9 | 0.839 5 | 0.796 9 | |
ChT | 0.816 8 | 0.912 2 | 0.807 9 | 0.912 2 | 0.781 7 | 0.912 2 | 0.750 0 | 0.912 2 | |
CMU16 | 0.818 4 | 0.867 2 | 0.833 0 | 0.867 2 | 0.846 0 | 0.504 4 | 0.862 6 | 0.504 4 | |
Libras | 0.502 4 | 0.626 5 | 0.479 1 | 0.575 5 | 0.237 7 | 0.505 2 | 0.203 2 | 0.313 0 | |
UWave | 0.652 4 | 0.760 5 | 0.657 7 | 0.708 7 | 0.604 0 | 0.708 9 | 0.389 9 | 0.708 7 | |
平均值 | 0.766 3 | 0.835 4 | 0.761 0 | 0.820 5 | 0.710 6 | 0.744 1 | 0.657 8 | 0.699 5 |
Tab.2 Accuracy, earliness, and harmonic mean comparison between OLPPMOAE_Cno and R1_Cno
指标 | 数据集 | ||||||||
---|---|---|---|---|---|---|---|---|---|
R1_Cno | OLPPMOAE_Cno | R1_Cno | OLPPMOAE_Cno | R1_Cno | OLPPMOAE_Cno | R1_Cno | OLPPMOAE_Cno | ||
准确率 | Wafer | 0.910 0 | 0.974 3 | 0.910 0 | 0.974 3 | 0.910 0 | 0.974 3 | 0.930 0 | 0.974 3 |
ECG | 0.830 0 | 0.830 0 | 0.820 0 | 0.870 0 | 0.830 0 | 0.880 0 | 0.840 0 | 0.900 0 | |
ChT | 0.880 0 | 0.959 7 | 0.890 0 | 0.959 7 | 0.900 0 | 0.959 7 | 0.920 0 | 0.959 7 | |
CMU16 | 0.740 0 | 0.862 1 | 0.760 0 | 0.862 1 | 0.780 0 | 0.965 5 | 0.810 0 | 0.965 5 | |
Libras | 0.410 0 | 0.605 6 | 0.490 0 | 0.716 7 | 0.600 0 | 0.733 3 | 0.610 0 | 0.750 0 | |
UWave | 0.650 0 | 0.867 0 | 0.720 0 | 0.883 8 | 0.720 0 | 0.884 1 | 0.770 0 | 0.883 6 | |
平均值 | 0.736 7 | 0.849 8 | 0.765 0 | 0.877 8 | 0.790 0 | 0.899 5 | 0.813 3 | 0.905 5 | |
早期性 | Wafer | 0.051 1 | 0.050 0 | 0.051 5 | 0.050 0 | 0.050 7 | 0.050 0 | 0.125 0 | 0.050 0 |
ECG | 0.066 0 | 0.054 0 | 0.097 3 | 0.073 5 | 0.097 0 | 0.136 0 | 0.161 0 | 0.285 0 | |
ChT | 0.238 0 | 0.130 9 | 0.260 4 | 0.130 9 | 0.309 1 | 0.130 9 | 0.367 0 | 0.130 9 | |
CMU16 | 0.084 5 | 0.127 6 | 0.078 4 | 0.127 6 | 0.075 9 | 0.658 6 | 0.077 6 | 0.658 6 | |
Libras | 0.351 3 | 0.351 1 | 0.531 4 | 0.519 2 | 0.851 8 | 0.614 7 | 0.878 1 | 0.802 2 | |
UWave | 0.345 1 | 0.322 7 | 0.394 7 | 0.408 5 | 0.479 8 | 0.408 4 | 0.739 0 | 0.408 4 | |
平均值 | 0.189 3 | 0.172 7 | 0.235 6 | 0.218 3 | 0.310 7 | 0.333 1 | 0.391 3 | 0.389 2 | |
调和均值 | Wafer | 0.929 0 | 0.962 0 | 0.928 9 | 0.962 0 | 0.929 2 | 0.962 0 | 0.901 7 | 0.962 0 |
ECG | 0.878 9 | 0.884 2 | 0.859 4 | 0.897 4 | 0.865 0 | 0.871 9 | 0.839 5 | 0.796 9 | |
ChT | 0.816 8 | 0.912 2 | 0.807 9 | 0.912 2 | 0.781 7 | 0.912 2 | 0.750 0 | 0.912 2 | |
CMU16 | 0.818 4 | 0.867 2 | 0.833 0 | 0.867 2 | 0.846 0 | 0.504 4 | 0.862 6 | 0.504 4 | |
Libras | 0.502 4 | 0.626 5 | 0.479 1 | 0.575 5 | 0.237 7 | 0.505 2 | 0.203 2 | 0.313 0 | |
UWave | 0.652 4 | 0.760 5 | 0.657 7 | 0.708 7 | 0.604 0 | 0.708 9 | 0.389 9 | 0.708 7 | |
平均值 | 0.766 3 | 0.835 4 | 0.761 0 | 0.820 5 | 0.710 6 | 0.744 1 | 0.657 8 | 0.699 5 |
指标 | 比较模型 | ||||
---|---|---|---|---|---|
准确 率 | 0.031 3 | 0.015 6 | 0.015 6 | 0.015 6 | |
0.015 6 | 0.015 6 | 0.015 6 | 0.015 6 | ||
0.015 6 | 0.015 6 | 0.015 6 | 0.015 6 | ||
早期 性 | 0.156 3 | 0.343 8 | 0.343 8 | 0.421 9 | |
0.343 8 | 0.343 8 | 0.343 8 | 0.343 8 | ||
0.156 3 | 0.500 0 | 0.421 9 | 0.343 8 | ||
调和 均值 | OLPPMOAE_Cno与R1_Cno | 0.015 6 | 0.015 6 | 0.218 8 | 0.281 3 |
0.015 6 | 0.031 3 | 0.156 3 | 0.281 3 | ||
0.0156 | 0.015 6 | 0.156 3 | 0.218 8 |
Tab. 3 Single-tailed p values of Wilcoxon signed rank test for accuracy, earliness, and harmonic mean obtained when comparing OLPPMOAE with R1_Clr
指标 | 比较模型 | ||||
---|---|---|---|---|---|
准确 率 | 0.031 3 | 0.015 6 | 0.015 6 | 0.015 6 | |
0.015 6 | 0.015 6 | 0.015 6 | 0.015 6 | ||
0.015 6 | 0.015 6 | 0.015 6 | 0.015 6 | ||
早期 性 | 0.156 3 | 0.343 8 | 0.343 8 | 0.421 9 | |
0.343 8 | 0.343 8 | 0.343 8 | 0.343 8 | ||
0.156 3 | 0.500 0 | 0.421 9 | 0.343 8 | ||
调和 均值 | OLPPMOAE_Cno与R1_Cno | 0.015 6 | 0.015 6 | 0.218 8 | 0.281 3 |
0.015 6 | 0.031 3 | 0.156 3 | 0.281 3 | ||
0.0156 | 0.015 6 | 0.156 3 | 0.218 8 |
数据集 | 准确率 | 早期性 | 调和均值 | |||
---|---|---|---|---|---|---|
MTSECP | OLPPMOAE_Cno | MTSECP | OLPPMOAE_Cno | MTSECP | OLPPMOAE_Cno | |
平均值 | 0.827 6 | 0.905 5 | 0.741 2 | 0.389 2 | 0.380 2 | 0.699 5 |
Wafer | 0.975 6 | 0.974 3 | 0.573 5 | 0.050 0 | 0.593 5 | 0.962 0 |
ECG | 0.943 9 | 0.900 0 | 0.538 3 | 0.285 0 | 0.620 1 | 0.796 9 |
ChT | 0.967 2 | 0.959 7 | 0.695 4 | 0.130 9 | 0.463 3 | 0.912 2 |
CMU16 | 0.706 9 | 0.965 5 | 0.879 3 | 0.658 6 | 0.206 2 | 0.504 4 |
Libras | 0.625 0 | 0.750 0 | 0.838 6 | 0.802 2 | 0.256 5 | 0.313 0 |
UWave | 0.747 0 | 0.883 6 | 0.922 0 | 0.408 4 | 0.141 3 | 0.708 7 |
Tab. 4 Comparison of accuracy, earliness and harmonic mean between MTSECP and OLPPMOAE_Cno
数据集 | 准确率 | 早期性 | 调和均值 | |||
---|---|---|---|---|---|---|
MTSECP | OLPPMOAE_Cno | MTSECP | OLPPMOAE_Cno | MTSECP | OLPPMOAE_Cno | |
平均值 | 0.827 6 | 0.905 5 | 0.741 2 | 0.389 2 | 0.380 2 | 0.699 5 |
Wafer | 0.975 6 | 0.974 3 | 0.573 5 | 0.050 0 | 0.593 5 | 0.962 0 |
ECG | 0.943 9 | 0.900 0 | 0.538 3 | 0.285 0 | 0.620 1 | 0.796 9 |
ChT | 0.967 2 | 0.959 7 | 0.695 4 | 0.130 9 | 0.463 3 | 0.912 2 |
CMU16 | 0.706 9 | 0.965 5 | 0.879 3 | 0.658 6 | 0.206 2 | 0.504 4 |
Libras | 0.625 0 | 0.750 0 | 0.838 6 | 0.802 2 | 0.256 5 | 0.313 0 |
UWave | 0.747 0 | 0.883 6 | 0.922 0 | 0.408 4 | 0.141 3 | 0.708 7 |
比较模型 | 准确率 | 早期性 | 调和均值 |
---|---|---|---|
OLPPMOAE_Cno与MTSECP | 0.218 8 | 0.015 6 | 0.015 6 |
0.218 8 | 0.015 6 | 0.015 6 | |
0.218 8 | 0.015 6 | 0.015 6 |
Tab.5 Single-tailed p values of Wilcoxon signed rank test obtained when comparing OLPPMOAE with MTSECP
比较模型 | 准确率 | 早期性 | 调和均值 |
---|---|---|---|
OLPPMOAE_Cno与MTSECP | 0.218 8 | 0.015 6 | 0.015 6 |
0.218 8 | 0.015 6 | 0.015 6 | |
0.218 8 | 0.015 6 | 0.015 6 |
方法(模型) | ECG | Wafer | ||||
---|---|---|---|---|---|---|
准确率 | 早期性 | 调和 均值 | 准确率 | 早期性 | 调和 均值 | |
MSD | 0.740 0 | 0.410 0 | 0.656 5 | 0.740 0 | 0.650 0 | 0.475 2 |
MCFEC-QBC | 0.770 0 | 0.240 0 | 0.765 0 | 0.900 0 | 0.230 0 | 0.829 9 |
MCFEC-Rule | 0.780 0 | 0.260 0 | 0.759 5 | 0.970 0 | 0.270 0 | 0.833 1 |
OLPPMOAE_Cno | 0.870 0 | 0.073 5 | 0.897 4 | 0.974 3 | 0.050 0 | 0.962 0 |
0.870 0 | 0.073 5 | 0.897 4 | 0.974 3 | 0.050 0 | 0.962 0 | |
0.880 0 | 0.082 0 | 0.898 6 | 0.974 3 | 0.050 0 | 0.962 0 |
Tab. 6 Comparison between OLPPMOAE and shapelet-based methods
方法(模型) | ECG | Wafer | ||||
---|---|---|---|---|---|---|
准确率 | 早期性 | 调和 均值 | 准确率 | 早期性 | 调和 均值 | |
MSD | 0.740 0 | 0.410 0 | 0.656 5 | 0.740 0 | 0.650 0 | 0.475 2 |
MCFEC-QBC | 0.770 0 | 0.240 0 | 0.765 0 | 0.900 0 | 0.230 0 | 0.829 9 |
MCFEC-Rule | 0.780 0 | 0.260 0 | 0.759 5 | 0.970 0 | 0.270 0 | 0.833 1 |
OLPPMOAE_Cno | 0.870 0 | 0.073 5 | 0.897 4 | 0.974 3 | 0.050 0 | 0.962 0 |
0.870 0 | 0.073 5 | 0.897 4 | 0.974 3 | 0.050 0 | 0.962 0 | |
0.880 0 | 0.082 0 | 0.898 6 | 0.974 3 | 0.050 0 | 0.962 0 |
模型 | 准确率 | 早期性 | ||||||
---|---|---|---|---|---|---|---|---|
OLPPMOAE_Cno | 0.849 8 | 0.877 8 | 0.899 5 | 0.905 5 | 0.172 7 | 0.218 3 | 0.333 1 | 0.389 2 |
0.854 1 | 0.873 2 | 0.893 7 | 0.900 2 | 0.172 4 | 0.210 4 | 0.302 5 | 0.360 2 | |
0.860 4 | 0.878 4 | 0.888 5 | 0.911 5 | 0.179 5 | 0.216 9 | 0.299 2 | 0.365 5 |
Tab.7 Change of OLPPMOAE earliness and accuracy with weight α
模型 | 准确率 | 早期性 | ||||||
---|---|---|---|---|---|---|---|---|
OLPPMOAE_Cno | 0.849 8 | 0.877 8 | 0.899 5 | 0.905 5 | 0.172 7 | 0.218 3 | 0.333 1 | 0.389 2 |
0.854 1 | 0.873 2 | 0.893 7 | 0.900 2 | 0.172 4 | 0.210 4 | 0.302 5 | 0.360 2 | |
0.860 4 | 0.878 4 | 0.888 5 | 0.911 5 | 0.179 5 | 0.216 9 | 0.299 2 | 0.365 5 |
模型 | 准确率 | 早期性 | 调和均值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OLPPMOAE_Cno | 0.849 8 | 0.877 8 | 0.899 5 | 0.905 5 | 0.172 7 | 0.218 3 | 0.333 1 | 0.389 2 | 0.835 4 | 0.820 5 | 0.744 1 | 0.699 5 |
0.854 1 | 0.873 2 | 0.893 7 | 0.900 2 | 0.172 4 | 0.210 4 | 0.302 5 | 0.360 2 | 0.837 3 | 0.824 4 | 0.772 8 | 0.729 0 | |
0.860 4 | 0.878 4 | 0.888 5 | 0.911 5 | 0.179 5 | 0.216 9 | 0.299 2 | 0.365 5 | 0.837 5 | 0.822 3 | 0.774 3 | 0.727 0 |
Tab.8 Influence of regularization term on performance of OLPPMOAE
模型 | 准确率 | 早期性 | 调和均值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OLPPMOAE_Cno | 0.849 8 | 0.877 8 | 0.899 5 | 0.905 5 | 0.172 7 | 0.218 3 | 0.333 1 | 0.389 2 | 0.835 4 | 0.820 5 | 0.744 1 | 0.699 5 |
0.854 1 | 0.873 2 | 0.893 7 | 0.900 2 | 0.172 4 | 0.210 4 | 0.302 5 | 0.360 2 | 0.837 3 | 0.824 4 | 0.772 8 | 0.729 0 | |
0.860 4 | 0.878 4 | 0.888 5 | 0.911 5 | 0.179 5 | 0.216 9 | 0.299 2 | 0.365 5 | 0.837 5 | 0.822 3 | 0.774 3 | 0.727 0 |
1 | GE N, WENG X, YANG Q. Unsupervised anomaly detection via two-dimensional singular value decomposition and subspace reconstruction for multivariate time series[J]. Applied Intelligence, 2023, 53: 16813-16829. |
2 | GUPTA A, PAL R, MISHRA R, et al. Game theory based early classification of rivers using time series data [C]// Proceedings of the 2019 IEEE 5th World Forum on Internet of Things. Piscataway: IEEE, 2019: 686-691. |
3 | MA C H, WENG X Q, SHAN Z N. Early classification of multivariate time series based on piecewise aggregate approximation[C]// Proceedings of the 6th International Conference on Health Information Science. Cham: Springer, 2017: 81-88. |
4 | HE G L, ZHAO W, XIA X W. Confidence-based early classification of multivariate time series with multiple interpretable rules [J]. Pattern Analysis and Applications, 2020, 23: 567-580. |
5 | ZHAO L, LIANG H, YU D, et al. Asynchronous multivariate time series early prediction for ICU transfer [C]// Proceedings of the 2019 International Conference on Intelligent Medicine and Health. New York: ACM, 2019: 17-22. |
6 | SHARMA A, SINGH S K. Early classification of multivariate data by learning optimal decision rules[J]. Multimedia Tools and Applications, 2021, 80(28/29): 35081-35104. |
7 | CAI D, HE X, HAN J, et al. Orthogonal laplacianfaces for face recognition [J]. IEEE Transactions on Image Processing, 2006, 15(11): 3608-3614. |
8 | PARSOPOULOS K E, VRAHATIS M N. Recent approaches to global optimization problems through particle swarm optimization[J]. Natural Computing, 2002, 1: 235-306. |
9 | SCHÄFER P, LESER U. TEASER: early and accurate time series classification [J]. Data Mining and Knowledge Discovery, 2020, 34(5): 1336-1362. |
10 | GUPTA A, GUPTA H P, BISWAS B, et al. Approaches and applications of early classification of time series: a review[J]. IEEE Transactions on Artificial Intelligence, 2020,1(1):47-61. |
11 | XING Z, PEI J, YU P S. Early prediction on time series: a nearest neighbor approach [C]// Proceedings of the 21st International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2009: 1297-1302. |
12 | XING Z, PEI J, YU P S. Early classification on time series [J]. Knowledge and Information Systems, 2012, 31(1): 105-127. |
13 | KEOGH E, CHAKRABARTI K, PAZZANI M, et al. Dimensionality reduction for fast similarity search in large time series databases [J]. Knowledge and Information Systems, 2001, 3: 263-286. |
14 | LI H. Piecewise aggregate representations and lower-bound distance functions for multivariate time series[J]. Physica A: Statistical Mechanics and its Applications, 2015, 427: 10-25. |
15 | MORI U, MENDIBURU A, KEOGH E, et al. Reliable early classification of time series based on discriminating the classes over time [J]. Data Mining and Knowledge Discovery, 2017, 31(1): 233-263. |
16 | SHARMA A, SINGH S K. Early classification of time series based on uncertainty measure[C]// Proceedings of the 2019 IEEE Conference on Information and Communication Technology. Piscataway: IEEE, 2019: 1-6. |
17 | XING Z, PEI J, YU P S, et al. Extracting interpretable features for early classification on time series [C]// Proceedings of the 2011 SIAM International Conference on Data Mining. Philadelphia: SIAM, 2011: 247-258. |
18 | GHALWASH M F, RADOSAVLJEVIC V, OBRADOVIC Z. Utilizing temporal patterns for estimating uncertainty in interpretable early decision making [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 402-411. |
19 | YAN W, LI G, WU Z, et al. Extracting diverse-shapelets for early classification on time series [J]. World Wide Web, 2020, 23(6): 3055-3081. |
20 | GHALWASH M F, OBRADOVIC Z. Early classification of multivariate temporal observations by extraction of interpretable shapelets [J]. BMC Bioinformatics, 2012, 13: 195. |
21 | HE G, DUAN Y, PENG R, et al. Early classification on multivariate time series[J]. Neurocomputing, 2015, 149: 777-787. |
22 | LIN Y-F, CHEN H-H, V-S TSENG, et al. Reliable early classification on multivariate time series with numerical and categorical attributes[C]// Proceedings of the 19th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2015: 199-211. |
23 | YAO L, LI Y, LI Y, et al. DTEC: distance transformation based early time series classification [C]// Proceedings of the 2019 SIAM International Conference on Data Mining. Philadelphia: SIAM, 2019: 486-494. |
24 | ZHANG W, WAN Y. Early classification of time series based on trend segmentation and optimization cost function [J]. Applied Intelligence, 2022, 52(6):6782-6793. |
25 | ZHANG N, SUN S. Multiview unsupervised shapelet learning for multivariate time series clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4981-4996. |
26 | LV J, HU X, LI L, et al. An effective confidence-based early classification of time series [J]. IEEE Access, 2019, 7: 96113-96124. |
27 | ACHENCHABE Y, BONDU A, CORNUÉJOLS A, et al. Early classification of time series: cost-based optimization criterion and algorithms [J]. Machine Learning, 2021, 110(6): 1481-1504. |
28 | DACHRAOUI A, BONDU A, CORNUÉJOLS A. Early classification of time series as a non myopic sequential decision making problem[C]// Proceedings of the 2015 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2015: 433-447. |
29 | MORI U, MENDIBURU A, DASGUPTA S, et al. Early classification of time series by simultaneously optimizing the accuracy and earliness [J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 4569-4578. |
30 | MORI U, MENDIBURU A, MIRANDA I M, et al. Early classification of time series using multi-objective optimization techniques [J]. Information Sciences, 2019, 492: 204-218. |
31 | LI S, LI K, FU Y. Early recognition of 3D human actions [J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2018, 14(1s): 20. |
32 | HSU E-Y, LIU C-L, TSENG V S. Multivariate time series early classification with interpretability using deep learning and attention mechanism [C]// Proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2019: 541-553. |
33 | HE X, YAN S, HU Y, et al. Face recognition using laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340. |
34 | RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning [M]. Cambridge: MIT Press, 2006: 13-19. |
35 | NG A Y. Feature selection, L1 vs. L2 regularization, and rotational invariance[C]// Proceedings of the 21st International Conference on Machine Learning. New York: ACM, 2004:78. |
36 | HE X. Locality preserving projections [D]. Chicago: University of Chicago, 2005:3-25. |
37 | 王沁, 李磊, 陆成勇,等. 平均计算时间复杂度优化的动态粒子群优化算法[J]. 计算机科学, 2010, 37(3): 191-194,288. |
WANG Q, LI L, LU C Y, et al. Average computational time complexity optimized dynamic particle swarm optimization algorithm[J]. Computer Science, 2010, 37(3): 191-194, 288. | |
38 | WILLIAMS B H, TOUSSAINT M, STORKEY A J. Extracting motion primitives from natural handwriting data [C]// Proceedings of the 16th International Conference on Artificial Neural Networks. Berlin: Springer, 2006: 634-643. |
39 | DIAS D B, MADEO R C B, ROCHA T, et al. Hand movement recognition for brazilian sign language: a study using distance-based neural networks [C]// Proceedings of the 2009 International Joint Conference on Neural Networks. Piscataway: IEEE, 2009: 697-704. |
40 | BAYDOGAN M G, RUNGER G. Learning a symbolic representation for multivariate time series classification [J]. Data Mining and Knowledge Discovery, 2015, 29: 400-422. |
41 | DAU H A, BAGNALL A, KAMGAR K, et al. The UCR time series archive[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6): 1293-1305. |
42 | RODRÍGUEZ J J, ALONSO C J, MAESTRO J A. Support vector machines of interval-based features for time series classification[J]. Knowledge-Based Systems, 2005, 18(4/5): 171-178. |
43 | PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. scikit-learn: machine learning in Python [J]. Journal of Machine Learning Research, 2011, 12: 2825-2830. |
[1] | Pei ZHAO, Yan QIAO, Rongyao HU, Xinyu YUAN, Minyue LI, Benchu ZHANG. Multivariate time series anomaly detection based on multi-domain feature extraction [J]. Journal of Computer Applications, 2024, 44(11): 3419-3426. |
[2] | ZHANG Qing, ZHENG Yan. Civil aviation engine module maintenance level decision-making and cost optimization based on annealing frog leaping particle swarm algorithm [J]. Journal of Computer Applications, 2020, 40(12): 3541-3549. |
[3] | HUO Weigang, CHENG Zhen, CHENG Wenli. Improved clustering algorithm for multivariate time series with unequal length [J]. Journal of Computer Applications, 2017, 37(12): 3477-3481. |
[4] | TANG Bing ZHANG Li. Cost optimization-oriented caching strategy for cloud storage [J]. Journal of Computer Applications, 2014, 34(11): 3109-3111. |
[5] | . Cost optimization model of relay-based B3G/4G cellular network [J]. Journal of Computer Applications, 2009, 29(12): 3207-3210. |
[6] | . An efficient similarity search for multivariate time series [J]. Journal of Computer Applications, 2008, 28(10): 2541-2543. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||