Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (11): 3457-3463.DOI: 10.11772/j.issn.1001-9081.2022111736
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Xiangyu LUO1(), Ke YAN1, Yan LU1, Tian WANG1, Gang XIN2
Received:
2022-11-22
Revised:
2023-02-27
Accepted:
2023-03-08
Online:
2023-03-20
Published:
2023-11-10
Contact:
Xiangyu LUO
About author:
LUO Xiangyu, born in 1984, Ph. D., associate professor. Her research interests include graph computing, complex network.Supported by:
通讯作者:
罗香玉
作者简介:
罗香玉(1984—),女,河北邢台人,副教授,博士,CCF会员,主要研究方向:图计算、复杂网络 luoxiangyu@xust.edu.cn基金资助:
CLC Number:
Xiangyu LUO, Ke YAN, Yan LU, Tian WANG, Gang XIN. Nonuniform time slicing method based on prediction of community variance[J]. Journal of Computer Applications, 2023, 43(11): 3457-3463.
罗香玉, 闫克, 卢琰, 王甜, 辛刚. 基于社区改变量估计的非均匀时间片划分方法[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3457-3463.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022111736
数据集 | 节点数 | 边数 | 时间跨度/d |
---|---|---|---|
Arxiv HEP-PH | 34 546 | 42 578 | 3 689 |
Sx-MathOverflow | 24 818 | 506 550 | 2 359 |
Tab. 1 Description of datasets
数据集 | 节点数 | 边数 | 时间跨度/d |
---|---|---|---|
Arxiv HEP-PH | 34 546 | 42 578 | 3 689 |
Sx-MathOverflow | 24 818 | 506 550 | 2 359 |
方法 | Arxiv HEP-PH | Sx-MathOverflow | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
本文方法 | 292.9 | — | 22.33 | — | 83 | — | 189.4 | — | 19.74 | — | 124 | — |
均匀时间片划分方法 | 294.0 | 1.1 | 30.67 | 8.34 | 73 | 10 | 192.7 | 3.3 | 26.15 | 6.41 | 109 | 15 |
基于网络拓扑改变量的划分方法 | 294.2 | 1.3 | 25.67 | 3.34 | 82 | 1 | 191.2 | 1.8 | 22.71 | 2.97 | 117 | 7 |
Tab. 2 Accuracy comparison of three time slicing methods on two datasets
方法 | Arxiv HEP-PH | Sx-MathOverflow | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
本文方法 | 292.9 | — | 22.33 | — | 83 | — | 189.4 | — | 19.74 | — | 124 | — |
均匀时间片划分方法 | 294.0 | 1.1 | 30.67 | 8.34 | 73 | 10 | 192.7 | 3.3 | 26.15 | 6.41 | 109 | 15 |
基于网络拓扑改变量的划分方法 | 294.2 | 1.3 | 25.67 | 3.34 | 82 | 1 | 191.2 | 1.8 | 22.71 | 2.97 | 117 | 7 |
社区发现算法 | Arxiv HEP-PH | Sx-MathOverflow | ||||||
---|---|---|---|---|---|---|---|---|
DynaMo | 293.3 | 22.56 | 84 | 47 | 187.1 | 20.16 | 122 | 72 |
Louvain | 292.9 | 22.33 | 83 | 47 | 187.4 | 19.74 | 124 | 72 |
Tab. 3 Influence of community detection algorithm on performance of proposed method
社区发现算法 | Arxiv HEP-PH | Sx-MathOverflow | ||||||
---|---|---|---|---|---|---|---|---|
DynaMo | 293.3 | 22.56 | 84 | 47 | 187.1 | 20.16 | 122 | 72 |
Louvain | 292.9 | 22.33 | 83 | 47 | 187.4 | 19.74 | 124 | 72 |
θ | Arxiv HEP-PH | Sx-MathOverflow | ||||||
---|---|---|---|---|---|---|---|---|
0.005 | 289.2 | 8.26 | 272 | 167 | 182.3 | 9.73 | 314 | 218 |
0.010 | 290.3 | 10.33 | 189 | 93 | 183.5 | 14.85 | 227 | 165 |
0.015 | 291.4 | 14.28 | 137 | 76 | 186.7 | 17.31 | 159 | 108 |
0.020 | 292.9 | 22.33 | 83 | 47 | 187.4 | 19.74 | 124 | 72 |
0.025 | 295.3 | 31.72 | 67 | 39 | 191.7 | 27.39 | 83 | 46 |
0.030 | 298.6 | 34.65 | 53 | 33 | 193.2 | 32.61 | 67 | 28 |
Tab. 4 Influence of threshold θ on performance of proposed method
θ | Arxiv HEP-PH | Sx-MathOverflow | ||||||
---|---|---|---|---|---|---|---|---|
0.005 | 289.2 | 8.26 | 272 | 167 | 182.3 | 9.73 | 314 | 218 |
0.010 | 290.3 | 10.33 | 189 | 93 | 183.5 | 14.85 | 227 | 165 |
0.015 | 291.4 | 14.28 | 137 | 76 | 186.7 | 17.31 | 159 | 108 |
0.020 | 292.9 | 22.33 | 83 | 47 | 187.4 | 19.74 | 124 | 72 |
0.025 | 295.3 | 31.72 | 67 | 39 | 191.7 | 27.39 | 83 | 46 |
0.030 | 298.6 | 34.65 | 53 | 33 | 193.2 | 32.61 | 67 | 28 |
1 | YAN J, LIU G. Two-stage anomaly detection algorithm via dynamic community evolution in temporal graph[J]. Applied Intelligence, 2022, 52(11): 12222-12240. 10.1007/s10489-021-03109-4 |
2 | JIA X, LI X, DU N, et al. Tracking community consistency in dynamic networks: an influence-based approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(2): 782-795. |
3 | PENG H, LI J, SONG Y, et al. Streaming social event detection and evolution discovery in heterogeneous information networks[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(5): No.89. 10.1145/3447585 |
4 | HU Y, YANG B, LV C. A local dynamic method for tracking communities and their evolution in dynamic networks[J]. Knowledge-Based Systems, 2016, 110: 176-190. 10.1016/j.knosys.2016.07.027 |
5 | SUN P G, QUAN Y N, MIAO Q G, et al. Identifying influential genes in protein-protein interaction networks[J]. Information Sciences, 2018, 454/455: 229-241. 10.1016/j.ins.2018.04.078 |
6 | FREILICH R, ARHAR T, ABRAMS J L, et al. Protein-protein interactions in the molecular chaperone network[J]. Accounts of Chemical Research, 2018, 51(4): 940-949. 10.1021/acs.accounts.8b00036 |
7 | LUO Y, MA J. The influence of positive news on rumor spreading in social networks with scale-free characteristics[J]. International Journal of Modern Physics C, 2018, 29(9): No.1850078. 10.1142/S012918311850078X |
8 | JIA J, WU W. A rumor transmission model with incubation in social networks[J]. Physica A: Statistical Mechanics and its Applications, 2018, 491: 453-462. 10.1016/j.physa.2017.09.063 |
9 | 陈小强,周丽华,程超,等. 动态网络中稳定社区发现[J]. 小型微型计算机系统, 2015, 36(9): 1977-1981. 10.3969/j.issn.1000-1220.2015.09.012 |
CHEN X Q, ZHOU L H, CHENG C, et al. Detecting stable communities in dynamic networks[J]. Journal of Chinese Computer Systems, 2015, 36(9): 1977-1981. 10.3969/j.issn.1000-1220.2015.09.012 | |
10 | DAKICHE N, TAYEBA F B S, SLIMANI Y, et al. Tracking community evolution in social networks: a survey[J]. Information Processing and Management, 2019, 56(3): 1084-1102. 10.1016/j.ipm.2018.03.005 |
11 | TAJEUNA E G, BOUGUESSA M, WANG S. Modeling and predicting community structure changes in time-evolving social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(6): 1166-1180. 10.1109/tkde.2018.2851586 |
12 | SAGANOWSKI S, BRÓDKA P, KAZIENKO P. Influence of the dynamic social network timeframe type and size on the group evolution discovery[C]// Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Piscataway: IEEE, 2012: 679-683. 10.1109/asonam.2012.113 |
13 | KADKHODA MOHAMMADMOSAFERI K, NADERI H. Evolution of communities in dynamic social networks: an efficient map-based approach[J]. Expert Systems with Applications, 2020, 147: No.113221. 10.1016/j.eswa.2020.113221 |
14 | PAN Y, ZHANG L. Modeling and analyzing dynamic social networks for behavioral pattern discovery in collaborative design[J]. Advanced Engineering Informatics, 2022, 54: No.101758. 10.1016/j.aei.2022.101758 |
15 | GUO C, WANG J, ZHANG Z. Evolutionary community structure discovery in dynamic weighted networks[J]. Physica A: Statistical Mechanics and its Applications, 2014, 413: 565-576. 10.1016/j.physa.2014.07.004 |
16 | LI W, ZHU H, LI S, et al. Evolutionary community discovery in dynamic social networks via resistance distance[J]. Expert Systems with Applications, 2021, 171: No.114536. 10.1016/j.eswa.2020.114536 |
17 | ORMAN G K, ÇOLAK S. Similarity based compression ratio for dynamic network modelling[C]// Proceedings of the IEEE 19th International Conference on Smart Technologies. Piscataway: IEEE, 2021: 227-232. 10.1109/eurocon52738.2021.9535635 |
18 | SULO R, BERGER-WOLF T, GROSSMAN R. Meaningful selection of temporal resolution for dynamic networks[C]// Proceedings of the 8th Workshop on Mining and Learning with Graphs. New York: ACM, 2010: 127-136. 10.1145/1830252.1830269 |
19 | ROSSETTI G, CAZABET R. Community discovery in dynamic networks: a survey[J]. ACM Computing Surveys, 2018, 51(2): No.35. 10.1145/3172867 |
20 | WANG Y, ARCHAMBAULT D, HALEEM H, et al. Nonuniform timeslicing of dynamic graphs based on visual complexity[C]// Proceedings of the 2019 IEEE Visualization Conference. Piscataway: IEEE, 2019: 1-5. 10.1109/visual.2019.8933748 |
21 | BHAT S Y, ABULAISH M. HOCTracker: tracking the evolution of hierarchical and overlapping communities in dynamic social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(4): 1019-1031. 10.1109/tkde.2014.2349918 |
22 | WANG Z, LI Z, YUAN G, et al. Tracking the evolution of overlapping communities in dynamic social networks[J]. Knowledge-Based Systems, 2018, 157: 81-97. 10.1016/j.knosys.2018.05.026 |
23 | QIAO S, HAN N, GAO Y, et al. Dynamic community evolution analysis framework for large-scale complex networks based on strong and weak events[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(10): 6229-6243. 10.1109/tsmc.2019.2960085 |
24 | XU Z, RUI X, HE J, et al. Superspreaders and superblockers based community evolution tracking in dynamic social networks[J]. Knowledge-Based Systems, 2020, 192: No.105377. 10.1016/j.knosys.2019.105377 |
25 | ÇOLAK S, ORMAN G K. Aggregating time windows for dynamic network extraction[C]// Proceedings of the 2021 International Conference on Innovations in Intelligent Systems and Applications. Piscataway: IEEE, 2021: 1-6. 10.1109/inista52262.2021.9548480 |
26 | ORMAN G K, TÜRE N, BALCISOY S, et al. Finding proper time intervals for dynamic network extraction[J]. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021(3): No.033414. 10.1088/1742-5468/abed45 |
27 | GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826. 10.1073/pnas.122653799 |
28 | BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): No.P10008. 10.1088/1742-5468/2008/10/p10008 |
29 | RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(3): No.036106. 10.1103/physreve.76.036106 |
30 | BRÓDKA P, SAGANOWSKI S, KAZIENKO P. Tracking group evolution in social networks[C]// Proceedings of the 2011 International Conference on Social Informatics, LNCS 6984. Berlin: Springer, 2011: 316-319. |
31 | WHEELWRIGHT S, MAKRIDAKIS S, HYNDMAN R J, Forecasting : Methods and Applications[M]. Hoboken, NJ: John Wiley & Sons, 2008: 335-346. |
32 | NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(2): No.026113. 10.1103/physreve.69.026113 |
33 | LESKOVEC J, KREVL A. High-energy physics citation network[DS/OL]. [2021-12-15].. |
34 | LESKOVEC J, KREVL A. Math overflow temporal network[DS/OL]. [2021-12-15].. |
35 | ZHUANG D, CHANG J M, LI M. DynaMo: dynamic community detection by incrementally maximizing modularity[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(5): 1934-1945. |
[1] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[2] | Shiliang LIU, Yi WANG, Yinglong MA. Non-overlapping community detection with imbalanced community sizes [J]. Journal of Computer Applications, 2024, 44(11): 3396-3402. |
[3] | Zhenyu LIU, Chaokun WANG, Gaoyang GUO. Parallel algorithm of betweenness centrality for dynamic networks [J]. Journal of Computer Applications, 2023, 43(7): 1987-1993. |
[4] | Lin ZHOU, Yuzhi XIAO, Peng LIU, Youpeng QIN. Community mining algorithm based on multi-relationship of nodes and its application [J]. Journal of Computer Applications, 2023, 43(5): 1489-1496. |
[5] | LI Zhanli, LI Ying, LUO Xiangyu, LUO Yingxiao. Local community detection algorithm based on Monte-Carlo iterative solving strategy [J]. Journal of Computer Applications, 2023, 43(1): 104-110. |
[6] | Jun HU, Zhengkang XU, Li LIU, Fujin ZHONG. Network embedding method based on multi-granularity community information [J]. Journal of Computer Applications, 2022, 42(3): 663-670. |
[7] | Yuan GUO, Xuewen WANG, Chong WANG, Jinlin JIANG. Nonlinear scrambling diffusion synchronization image encryption based on dynamic network [J]. Journal of Computer Applications, 2022, 42(1): 162-170. |
[8] | ZHANG Yuanjun, ZHANG Xihuang. Dynamic network representation learning model based on graph convolutional network and long short-term memory network [J]. Journal of Computer Applications, 2021, 41(7): 1857-1864. |
[9] | LI Ping, WANG Fen, CHEN Qidong, SUN Jun. Discrete random drift particle swarm optimization algorithm for solving multi-objective community detection problem [J]. Journal of Computer Applications, 2021, 41(3): 803-811. |
[10] | Huibo LI, Yunxiao ZHAO, Liang BAI. Dynamic graph representation learning method based on deep neural network and gated recurrent unit [J]. Journal of Computer Applications, 2021, 41(12): 3432-3437. |
[11] | Jicheng CHEN, Hongchang CHEN. Community detection method based on tensor modeling and evolutionary K-means clustering [J]. Journal of Computer Applications, 2021, 41(11): 3120-3126. |
[12] | LI Chunying, TANG Yong, XIAO Zhenghong, LI Tiansong. Influential scholar recommendation model in academic social network [J]. Journal of Computer Applications, 2020, 40(9): 2594-2599. |
[13] | LUO Xiangyu, LI Jianan, LUO Xiaoxia, WANG Jia. Improved community evolution relationship analysis method for dynamic graphs [J]. Journal of Computer Applications, 2020, 40(8): 2313-2318. |
[14] | ZHENG Wenping, YUE Xiangdou, YANG Gui. Improved label propagation algorithm based on random walk [J]. Journal of Computer Applications, 2020, 40(12): 3423-3429. |
[15] | CHENG Qiwei, CHEN Qimai, HE Chaobo, LIU Hai. Overlapping community detection method based on improved symmetric binary nonnegative matrix factorization [J]. Journal of Computer Applications, 2020, 40(11): 3203-3210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||