[1] XIE X,LI Y,ZHANG Z,et al. A joint link prediction method for social network[C]//Proceedings of the 2015 International Conference of Young Computer Scientists, Engineers and Educators,CCIS 503. Berlin:Springer,2015:56-64. [2] OU M,CUI P,PEI J,et al. Asymmetric transitivity preserving graph embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2016:1105-1114. [3] RAHMAN M,SAHA T K,HASAN M A,et al. DyLink2Vec:effective feature representation for link prediction in dynamic networks[J]. Cognitive Computation,2015,41(13):635-646. [4] 涂存超, 杨成, 刘知远, 等. 网络表示学习综述[J]. 中国科学:信息科学,2017,47(8):980-996.(TU C C,YANG C,LIU Z Y,et al. Network representation learning:an overview[J]. SCIENTIA SINICA Informationis,2017,47(8):980-996.) [5] KIPF T N,WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2020-04-20]. https://arxiv.org/pdf/1609.02907.pdf. [6] GOYAL P,CHHETRI S R,CANEDO A. dyngraph2vec:capturing network dynamics using dynamic graph representation learning[J]. Knowledge-Based Systems,2020,187:No. 104816. [7] PAL A, BASKAR S. Speech emotion recognition using Deep Dropout Autoencoders[C]//Proceedings of the 2015 IEEE International Conference on Engineering and Technology. Piscataway:IEEE,2015:1-6. [8] GOYAL P, FERRARA E. Graph embedding techniques, applications,and performance:a survey[J]. Knowledge-Based Systems,2018,151:78-94. [9] ZHOU L,YANG Y,REN X,et al. Dynamic network embedding by modelling triadic closure process[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:571-578. [10] LUO A, GONG L, ZHOU N, et al. Adaptive and blind watermarking scheme based on optimal SVD blocks selection[J]. Multimedia Tools and Applications,2020,79(1/2):243-261. [11] TAHERI A,BERGER-WOLF T. Predictive temporal embedding of dynamic graphs[C]//Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York:ACM,2019:57-64. [12] BENGIO Y,DELALLEAU O,ROUX N L. Label propagation and quadratic criterion[M]//CHAPELLE O,SCHOLKOPF B,ZIEN A. Semi-Supervised Learning. Cambridge:MIT Press,2006:193-216. [13] SATHASIVAM S. Learning in the recurrent Hopfield network[C]//Proceedings of the 5th International Conference on Computer Graphics. Piscataway:IEEE,2008:111-125. [14] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science,2006, 313(5786):504-509. [15] BELKIN M,NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation,2003, 15(6):1362-1396. [16] 李卫疆, 漆芳. 基于多通道双向长短期记忆网络的情感分析[J]. 中文信息学报,2019,33(12):119-128.(LI W J,QI F. Sentiment analysis based on multi-channel bidirectional long shortterm memory network[J]. Journal of Chinese Information Processing,2019,33(12):119-128.) [17] FU S, LIU W, TAO D, et al. HesGCN:Hessian graph convolutional networks for semi-supervised classification[J]. Information Sciences,2020,514:484-498. [18] CHUNG F R K. Spectral Graph Theory[M]. Providence,RI:American Mathematical Society,1997:226-245. [19] GEHRKE J,GINSPARG P,KLEINBERG J. Overview of the 2003 KDD Cup[J]. ACM SIGKDD Explorations Newsletter, 2003,5(2):149-151. [20] LESKOVEC J,KLEINBERG J,FALOUTSOS C. Graphs over time:densification laws, shrinking diameters and possible explanations[C]//Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York:ACM,2005:177-187. [21] KAR P,NARASIMHAN H,JAIN P. Surrogate functions for maximizing precision at the top[C]//Proceedings of the 2015 International Conference on Machine Learning. New York:JMLR. org,2015:189-198. [22] WOLFARTH B,BRAY M S,HAGBERG J M,et al. The human gene map for performance and health-related fitness phenotypes:the 2004 update[J]. Medicine and Science in Sports and Exercise,2005,37(6):881-903. [23] ZHOU J,WANG J,LIU G. Multiple character embeddings for Chinese word segmentation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics:Student Research Workshop. Stroudsburg, PA:Association for Computational Linguistics,2019:210-216. |