Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3581-3586.DOI: 10.11772/j.issn.1001-9081.2023101540
• Multimedia computing and computer simulation • Previous Articles Next Articles
Ziyi LI, Tingting QU, Qianpeng CHONG, Jindong XU()
Received:
2023-11-09
Revised:
2023-12-25
Accepted:
2023-12-26
Online:
2024-01-04
Published:
2024-11-10
Contact:
Jindong XU
About author:
LI Ziyi, born in 2000, M. S. candidate. Her research interests include remote sensing image segmentation, image classification.Supported by:
通讯作者:
徐金东
作者简介:
李子怡(2000—),女,山东新泰人,硕士研究生,主要研究方向:遥感图像分割、图像分类基金资助:
CLC Number:
Ziyi LI, Tingting QU, Qianpeng CHONG, Jindong XU. Remote sensing image segmentation network based on fuzzy multiscale features[J]. Journal of Computer Applications, 2024, 44(11): 3581-3586.
李子怡, 曲婷婷, 崇乾鹏, 徐金东. 基于模糊多尺度特征的遥感图像分割网络[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3581-3586.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023101540
方法 | Vaihingen | Potsdam | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | mF1 | FWIoU | OA | F1 | mF1 | FWIoU | OA | |||||||||
建筑物 | 低矮 植被 | 汽车 | 不透明水表面 | 树木 | 建筑物 | 低矮 植被 | 汽车 | 不透明水表面 | 树木 | |||||||
FCN | 0.930 | 0.776 | 0.760 | 0.843 | 0.849 | 0.832 | 0.739 | 0.842 | 0.882 | 0.846 | 0.675 | 0.861 | 0.753 | 0.803 | 0.684 | 0.815 |
U-Net | 0.913 | 0.777 | 0.819 | 0.832 | 0.856 | 0.840 | 0.728 | 0.841 | 0.854 | 0.856 | 0.738 | 0.853 | 0.748 | 0.810 | 0.697 | 0.822 |
SegNet | 0.912 | 0.749 | 0.741 | 0.822 | 0.852 | 0.815 | 0.712 | 0.831 | 0.849 | 0.837 | 0.631 | 0.832 | 0.636 | 0.757 | 0.648 | 0.791 |
DeepLabV3+ | 0.932 | 0.772 | 0.775 | 0.825 | 0.861 | 0.833 | 0.733 | 0.844 | 0.929 | 0.878 | 0.804 | 0.882 | 0.772 | 0.853 | 0.753 | 0.859 |
MACU-Net | 0.867 | 0.774 | 0.752 | 0.792 | 0.845 | 0.806 | 0.698 | 0.820 | 0.883 | 0.856 | 0.717 | 0.852 | 0.689 | 0.799 | 0.696 | 0.823 |
MaNet | 0.938 | 0.771 | 0.825 | 0.848 | 0.856 | 0.848 | 0.737 | 0.847 | 0.930 | 0.878 | 0.805 | 0.789 | 0.893 | 0.859 | 0.755 | 0.860 |
FNNet | 0.943 | 0.774 | 0.841 | 0.852 | 0.857 | 0.853 | 0.741 | 0.850 | 0.932 | 0.816 | 0.825 | 0.850 | 0.856 | 0.856 | 0.747 | 0.853 |
FMCNet | 0.946 | 0.777 | 0.826 | 0.859 | 0.860 | 0.854 | 0.746 | 0.853 | 0.932 | 0.880 | 0.807 | 0.789 | 0.897 | 0.861 | 0.759 | 0.863 |
Tab. 1 Segmentation accuracy of experimental results on Vaihingen and Potsdam remote sensing datasets
方法 | Vaihingen | Potsdam | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | mF1 | FWIoU | OA | F1 | mF1 | FWIoU | OA | |||||||||
建筑物 | 低矮 植被 | 汽车 | 不透明水表面 | 树木 | 建筑物 | 低矮 植被 | 汽车 | 不透明水表面 | 树木 | |||||||
FCN | 0.930 | 0.776 | 0.760 | 0.843 | 0.849 | 0.832 | 0.739 | 0.842 | 0.882 | 0.846 | 0.675 | 0.861 | 0.753 | 0.803 | 0.684 | 0.815 |
U-Net | 0.913 | 0.777 | 0.819 | 0.832 | 0.856 | 0.840 | 0.728 | 0.841 | 0.854 | 0.856 | 0.738 | 0.853 | 0.748 | 0.810 | 0.697 | 0.822 |
SegNet | 0.912 | 0.749 | 0.741 | 0.822 | 0.852 | 0.815 | 0.712 | 0.831 | 0.849 | 0.837 | 0.631 | 0.832 | 0.636 | 0.757 | 0.648 | 0.791 |
DeepLabV3+ | 0.932 | 0.772 | 0.775 | 0.825 | 0.861 | 0.833 | 0.733 | 0.844 | 0.929 | 0.878 | 0.804 | 0.882 | 0.772 | 0.853 | 0.753 | 0.859 |
MACU-Net | 0.867 | 0.774 | 0.752 | 0.792 | 0.845 | 0.806 | 0.698 | 0.820 | 0.883 | 0.856 | 0.717 | 0.852 | 0.689 | 0.799 | 0.696 | 0.823 |
MaNet | 0.938 | 0.771 | 0.825 | 0.848 | 0.856 | 0.848 | 0.737 | 0.847 | 0.930 | 0.878 | 0.805 | 0.789 | 0.893 | 0.859 | 0.755 | 0.860 |
FNNet | 0.943 | 0.774 | 0.841 | 0.852 | 0.857 | 0.853 | 0.741 | 0.850 | 0.932 | 0.816 | 0.825 | 0.850 | 0.856 | 0.856 | 0.747 | 0.853 |
FMCNet | 0.946 | 0.777 | 0.826 | 0.859 | 0.860 | 0.854 | 0.746 | 0.853 | 0.932 | 0.880 | 0.807 | 0.789 | 0.897 | 0.861 | 0.759 | 0.863 |
模型 | FNL | MSFE | OA | FWIoU |
---|---|---|---|---|
Baseline | 0.892 | 0.808 | ||
Baseline w/FNL | √ | 0.891 | 0.807 | |
Baseline w/MSFE | √ | 0.893 | 0.810 | |
FMCNet | √ | √ | 0.915 | 0.848 |
Tab. 2 Analysis of ablation experiments
模型 | FNL | MSFE | OA | FWIoU |
---|---|---|---|---|
Baseline | 0.892 | 0.808 | ||
Baseline w/FNL | √ | 0.891 | 0.807 | |
Baseline w/MSFE | √ | 0.893 | 0.810 | |
FMCNet | √ | √ | 0.915 | 0.848 |
ID | 方法 | 参数量/106 | 运行时间/s |
---|---|---|---|
1 | FCN | 91.40 | 7.679 |
2 | U-Net | 51.16 | 6.107 |
3 | SegNet | 112.45 | 6.343 |
4 | DeepLabV3+ | 229.19 | 7.118 |
5 | MaNet | 88.17 | 6.664 |
6 | MACU-Net | 19.74 | 6.084 |
7 | FNNet | 137.06 | 7.409 |
8 | FMCNet | 119.19 | 7.508 |
Tab. 3 Cost analysis
ID | 方法 | 参数量/106 | 运行时间/s |
---|---|---|---|
1 | FCN | 91.40 | 7.679 |
2 | U-Net | 51.16 | 6.107 |
3 | SegNet | 112.45 | 6.343 |
4 | DeepLabV3+ | 229.19 | 7.118 |
5 | MaNet | 88.17 | 6.664 |
6 | MACU-Net | 19.74 | 6.084 |
7 | FNNet | 137.06 | 7.409 |
8 | FMCNet | 119.19 | 7.508 |
1 | CHEN B, XIA M, HUANG J. MFANet: a multi-level feature aggregation network for semantic segmentation of land cover[J]. Remote Sensing, 2021, 13(4): No.731. |
2 | 杨军,于茜子. 结合空洞卷积的FuseNet变体网络高分辨率遥感影像语义分割[J]. 武汉大学学报(信息科学版), 2022, 47(7): 1071-1080. |
YANG J, YU X Z. Semantic segmentation of high-resolution remote sensing images based on improved FuseNet combined with atrous convolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1071-1080. | |
3 | 肖春姣,李宇,张洪群,等.深度融合网结合条件随机场的遥感图像语义分割[J]. 遥感学报, 2020, 24(3): 254-264. |
XIAO C J, LI Y, ZHANG H Q, et al. Semantic segmentation of remote sensing image based on deep fusion networks and conditional random field[J]. Journal of Remote Sensing, 2020, 24(3): 254-264. | |
4 | CHEN L C, PAPANDREOU G, KOKKINOS I. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. (2016-06-07) [2023-07-10].. |
5 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. |
6 | CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 833-851. |
7 | LIN J, JING W, SONG H. SAN: scale-aware network for semantic segmentation of high-resolution aerial images[EB/OL]. (2019-07-06) [2023-07-10].. |
8 | LI R, ZHENG S, ZHANG C, et al. Multiattention network for semantic segmentation of fine resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.5607713. |
9 | WANG H, MIAO F. Building extraction from remote sensing images using deep residual U-Net[J]. European Journal of Remote Sensing, 2022, 55(1): 71-85. |
10 | CHEN M, WU J, LIU L, et al. DRNet: an improved network for building extraction from high resolution remote sensing image[J]. Remote Sensing, 2021, 13(2): No.294. |
11 | CHONG Q, XU J, JIA F, et al. A multiscale fuzzy dual-domain attention network for urban remote sensing image segmentation[J]. International Journal of Remote Sensing, 2022, 43(14): 5480-5501. |
12 | GERKE M, ROTTENSTEINER F, WEGNER J D, et al. ISPRS semantic labeling contest[J]. Remote Sensing, 2020, 12(3): 417-446. |
13 | SU Y, CHENG J, BAI H, et al. Semantic segmentation of very-high-resolution remote sensing images via deep multi-feature learning[J]. Remote Sensing, 2022, 14(3): No.533. |
14 | WANG Q, ZHANG X, CHEN G, et al. Change detection based on Faster R-CNN for high-resolution remote sensing images[J]. Remote Sensing Letters, 2018, 9(10): 923-932. |
15 | LI R, ZHENG S, DUAN C, et al. Multistage attention ResU-Net for semantic segmentation of fine-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: No.8009205. |
16 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. |
17 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
18 | BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
19 | LI R, DUAN C, ZHENG S, et al. MACU-Net for semantic segmentation of fine-resolution remotely sensed images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: No.8007205. |
20 | QU T, XU J, CHONG Q, et al. Fuzzy neighborhood neural network for high-resolution remote sensing image segmentation[J]. European Journal of Remote Sensing, 2023, 56(1): No.2174706. |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[3] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
[4] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[5] | Chunxue ZHANG, Liqing QIU, Cheng’ai SUN, Caixia JING. Purchase behavior prediction model based on two-stage dynamic interest recognition [J]. Journal of Computer Applications, 2024, 44(8): 2365-2371. |
[6] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[7] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
[8] | Xun YAO, Zhongzheng QIN, Jie YANG. Generative label adversarial text classification model [J]. Journal of Computer Applications, 2024, 44(6): 1781-1785. |
[9] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[10] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[11] | Junfeng SHEN, Xingchen ZHOU, Can TANG. Dual-channel sentiment analysis model based on improved prompt learning method [J]. Journal of Computer Applications, 2024, 44(6): 1796-1806. |
[12] | Wenshuo GAO, Xiaoyun CHEN. Point cloud classification network based on node structure [J]. Journal of Computer Applications, 2024, 44(5): 1471-1478. |
[13] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[14] | Boyue WANG, Yingxiang LI, Jiandan ZHONG. Segmentation network for day and night ground-based cloud images based on improved Res-UNet [J]. Journal of Computer Applications, 2024, 44(4): 1310-1316. |
[15] | Pengfei ZHANG, Litao HAN, Hengjian FENG, Hongmei LI. Point cloud semantic segmentation based on attention mechanism and global feature optimization [J]. Journal of Computer Applications, 2024, 44(4): 1086-1092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||