Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (6): 1751-1759.DOI: 10.11772/j.issn.1001-9081.2023060762

Special Issue: 人工智能

• Artificial intelligence • Previous Articles     Next Articles

Multi-relation approximate reasoning model based on uncertain knowledge graph embedding

Jianjing LI1, Guanfeng LI1(), Feizhou QIN1, Weijun LI2   

  1. 1.School of Information Engineering,Ningxia University,Yinchuan Ningxia 750021,China
    2.School of Computer Science and Engineering,North Minzu University,Yinchuan Ningxia 750021,China
  • Received:2023-06-14 Revised:2023-08-17 Accepted:2023-08-21 Online:2023-08-30 Published:2024-06-10
  • Contact: Guanfeng LI
  • About author:LI Jianjing, born in 1997, M. S. candidate. His research interests include knowledge graph, representation learning, deep learning.
    QIN Feizhou, born in 1972, M. S., professor. Her research interests include graph database.
    LI Weijun, born in 1979, Ph. D., lecturer. His research interests include knowledge engineering, intelligent data processing.
  • Supported by:
    National Natural Science Foundation of China(62066038);Ningxia Natural Science Foundation(2022AAC03026);Graduate Innovation Project of Ningxia University in 2023

基于不确定知识图谱嵌入的多关系近似推理模型

李健京1, 李贯峰1(), 秦飞舟1, 李卫军2   

  1. 1.宁夏大学 信息工程学院,银川 750021
    2.北方民族大学 计算机科学与工程学院,银川 750021
  • 通讯作者: 李贯峰
  • 作者简介:李健京(1997—),男,福建莆田人,硕士研究生,CCF会员,主要研究方向:知识图谱、表示学习、深度学习
    秦飞舟(1972—),女,江苏泰兴人,教授,硕士,CCF会员,主要研究方向:图数据库
    李卫军(1979—),男,陕西渭南人,讲师,博士,主要研究方向:知识工程、智能数据处理。
  • 基金资助:
    国家自然科学基金资助项目(62066038);宁夏自然科学基金资助项目(2022AAC03026);宁夏大学2023研究生创新项目

Abstract:

Because the uncertain embedding model of large-scale Knowledge Graph (KG) can not perform approximate reasoning on multiple logical relationships, a multi-relation approximate reasoning model based on Uncertain KG Embedding (UKGE) named UDConEx (Uncertainty DistMult (Distance Multiplicative) and complex Convolution Embedding) was proposed. Firstly, the UDConEx combined the characteristics of DistMult and ComplEx (Complex Embedding), enabling it to infer symmetric and asymmetric relationships. Subsequently, Convolutional Neural Network(CNN) was employed by the UDConEx to capture the interactive information in the uncertain KG, thereby enabling it to reason inverse and transitive relationships. Lastly, the neural network was employed to carry out confidence learning of uncertain KG information, enabling the UDConEx to perform approximate reasoning within the UKGE space. The experimental results on three public data sets of CN15k, NL27k, and PPI5k show that, compared with MUKGE (Multiplex UKGE) model, the Mean Absolute Error (MAE) of confidence prediction is reduced by 6.3%, 30.1% and 44.9% for CN15k, NL27k and PPI5k respectively; in the task of relation fact ranking, the linear-based Normalized Discounted Cumulative Gain (NDCG) is improved by 5.8% and 2.6% for CN15k and NL27k respectively; in the multi-relation approximate reasoning task, it is verified that the UDConEx has the approximate reasoning ability of multiple logical relationships. The inability of traditional embedding models to predict confidence is compensated for by the UDConEx, which achieves approximate reasoning for multiple logical relationships and offers enhanced accuracy and interpretability in uncertainty KG reasoning.

Key words: Knowledge Graph (KG), multi-relation reasoning, approximate reasoning, uncertainty, Convolutional Neural Network (CNN)

摘要:

针对大规模知识图谱(KG)的不确定性嵌入模型中无法对多种逻辑关系进行近似推理的问题,提出一种基于不确定KG嵌入(UKGE)的多关系近似推理模型UDConEx(Uncertainty DistMult (Distance Multiplicative) and complex Convolution Embedding)。首先,UDConEx结合DistMult和ComplEx(Complex Embedding)模型的特点,使得UDConEx具有推理对称与非对称关系的能力;其次,UDConEx采用卷积神经网络(CNN)捕获不确定性KG中的交互信息,使它具有推理逆关系和传递关系的能力;最后,UDConEx利用神经网络对KG的不确定信息进行置信度学习,在UKGE空间中可以进行近似推理。在CN15k、NL27k和PPI5k这3个公开数据集上的实验结果表明,相较于MUKGE(Multiplex UKGE)模型,UDConEx在CN15k、NL27k和PPI5k的置信度预测任务中平均绝对误差(MAE)分别降低了6.3%,30.1%和44.9%;在关系事实排名任务中,基于线性的归一化折损累计增益(NDCG)在CN15k和NL27k数据集中分别提升了5.8%和2.6%;在多关系近似推理任务中验证了UDConEx具有多种逻辑关系的近似推理能力。UDConEx弥补了传统嵌入模型无法进行置信度预测的不足,实现了对多种逻辑关系的近似推理,具有更精确、具有可解释性的不确定性知识图谱推理能力。

关键词: 知识图谱, 多关系推理, 近似推理, 不确定性, 卷积神经网络

CLC Number: