Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (6): 1751-1759.DOI: 10.11772/j.issn.1001-9081.2023060762
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Jianjing LI1, Guanfeng LI1(), Feizhou QIN1, Weijun LI2
Received:
2023-06-14
Revised:
2023-08-17
Accepted:
2023-08-21
Online:
2023-08-30
Published:
2024-06-10
Contact:
Guanfeng LI
About author:
LI Jianjing, born in 1997, M. S. candidate. His research interests include knowledge graph, representation learning, deep learning.Supported by:
通讯作者:
李贯峰
作者简介:
李健京(1997—),男,福建莆田人,硕士研究生,CCF会员,主要研究方向:知识图谱、表示学习、深度学习基金资助:
CLC Number:
Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding[J]. Journal of Computer Applications, 2024, 44(6): 1751-1759.
李健京, 李贯峰, 秦飞舟, 李卫军. 基于不确定知识图谱嵌入的多关系近似推理模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1751-1759.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023060762
数据集 | 实体数 | 关系数 | 训练集 样本数 | 验证集 样本数 | 测试集 样本数 |
---|---|---|---|---|---|
CN15k | 15 000 | 36 | 204 984 | 16 881 | 3 133 |
NL27k | 27 221 | 417 | 149 100 | 12 278 | 14 034 |
PPI5k | 4 999 | 7 | 230 929 | 19 017 | 21 720 |
Tab. 1 Statistics of datasets used in experiments
数据集 | 实体数 | 关系数 | 训练集 样本数 | 验证集 样本数 | 测试集 样本数 |
---|---|---|---|---|---|
CN15k | 15 000 | 36 | 204 984 | 16 881 | 3 133 |
NL27k | 27 221 | 417 | 149 100 | 12 278 | 14 034 |
PPI5k | 4 999 | 7 | 230 929 | 19 017 | 21 720 |
模型 | CN15k | NL27k | PPI5k | |||
---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | |
UKGErect | 8.61 | 19.90 | 2.36 | 6.90 | 0.95 | 3.79 |
UKGElogi | 9.86 | 20.05 | 2.67 | 7.03 | 0.96 | 4.09 |
UComplEx | 8.11* | 20.17* | 1.65* | 4.80* | 0.53* | 3.69* |
UKG S E | 7.71 | 21.34 | 4.11* | 9.79* | 0.98 | 5.98 |
BEUrRE | 7.49 | 19.88 | 2.01 | 6.89 | 0.94* | 3.67* |
UBetaE | 7.20 | 2.11* | 6.93* | 0.76* | 3.74* | |
MUKGErect | 19.73 | 1.63 | 6.67 | 3.61 | ||
MUKGElogi | 9.99 | 20.42 | 2.11 | 6.12 | 0.66 | 4.21 |
UDConExlogi | 7.70 | 18.93 | 0.30 | |||
UDConExrect | 7.04 | 18.48 | 1.44 | 4.66 | 0.30 | 1.99 |
Tab. 2 Confidence prediction results for three datasets
模型 | CN15k | NL27k | PPI5k | |||
---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | |
UKGErect | 8.61 | 19.90 | 2.36 | 6.90 | 0.95 | 3.79 |
UKGElogi | 9.86 | 20.05 | 2.67 | 7.03 | 0.96 | 4.09 |
UComplEx | 8.11* | 20.17* | 1.65* | 4.80* | 0.53* | 3.69* |
UKG S E | 7.71 | 21.34 | 4.11* | 9.79* | 0.98 | 5.98 |
BEUrRE | 7.49 | 19.88 | 2.01 | 6.89 | 0.94* | 3.67* |
UBetaE | 7.20 | 2.11* | 6.93* | 0.76* | 3.74* | |
MUKGErect | 19.73 | 1.63 | 6.67 | 3.61 | ||
MUKGElogi | 9.99 | 20.42 | 2.11 | 6.12 | 0.66 | 4.21 |
UDConExlogi | 7.70 | 18.93 | 0.30 | |||
UDConExrect | 7.04 | 18.48 | 1.44 | 4.66 | 0.30 | 1.99 |
模型 | CN15k | NL27k | PPI5k | |||
---|---|---|---|---|---|---|
linear | exp | linear | exp | linear | exp | |
TransE | 0.601 | 0.591 | 0.730 | 0.722 | 0.710 | 0.700 |
DistMult | 0.689 | 0.677 | 0.911 | 0.897 | 0.894 | 0.880 |
ComplEx | 0.723 | 0.712 | 0.921 | 0.913 | 0.896 | 0.881 |
UKGErect | 0.773 | 0.775 | 0.939 | 0.942 | 0.946 | 0.946 |
UKGElogi | 0.789 | 0.788 | 0.955 | 0.956 | 0.970 | 0.969 |
UComplEx | 0.841 | 0.850 | 0.944 | 0.946 | 0.986 | 0.986 |
UKG S E | 0.780 | 0.795 | 0.841* | 0.843 | 0.980 | 0.979 |
BEUrRE | 0.801 | 0.803 | 0.948* | 0.948* | ||
UBetaE | 0.845* | 0.851* | 0.944* | 0.945* | 0.987* | 0.986* |
MUKGErect | 0.832 | 0.835 | 0.877 | 0.882 | 0.959 | 0.958 |
MUKGElogi | 0.849 | 0.850 | 0.945 | 0.947 | 0.991 | 0.990 |
UDConExlogi | 0.898 | 0.899 | 0.970 | 0.971 | 0.988 | 0.987 |
UDConExrect | 0.959 | 0.963 |
Tab. 3 Relation fact ranking results for three datasets
模型 | CN15k | NL27k | PPI5k | |||
---|---|---|---|---|---|---|
linear | exp | linear | exp | linear | exp | |
TransE | 0.601 | 0.591 | 0.730 | 0.722 | 0.710 | 0.700 |
DistMult | 0.689 | 0.677 | 0.911 | 0.897 | 0.894 | 0.880 |
ComplEx | 0.723 | 0.712 | 0.921 | 0.913 | 0.896 | 0.881 |
UKGErect | 0.773 | 0.775 | 0.939 | 0.942 | 0.946 | 0.946 |
UKGElogi | 0.789 | 0.788 | 0.955 | 0.956 | 0.970 | 0.969 |
UComplEx | 0.841 | 0.850 | 0.944 | 0.946 | 0.986 | 0.986 |
UKG S E | 0.780 | 0.795 | 0.841* | 0.843 | 0.980 | 0.979 |
BEUrRE | 0.801 | 0.803 | 0.948* | 0.948* | ||
UBetaE | 0.845* | 0.851* | 0.944* | 0.945* | 0.987* | 0.986* |
MUKGErect | 0.832 | 0.835 | 0.877 | 0.882 | 0.959 | 0.958 |
MUKGElogi | 0.849 | 0.850 | 0.945 | 0.947 | 0.991 | 0.990 |
UDConExlogi | 0.898 | 0.899 | 0.970 | 0.971 | 0.988 | 0.987 |
UDConExrect | 0.959 | 0.963 |
数据集 | 原始不确定KG | 逻辑 关系 | 链接预测的不确定KG | ||||||
---|---|---|---|---|---|---|---|---|---|
头实体 | 关系 | 尾实体 | 置信度 | 头实体 | 关系 | 尾实体 | 置信度 | ||
CN15k | paradise | synonym | heaven | 0.984 3 | 对称 关系 | heaven | synonym | paradise | 0.841 5 |
eden | 0.937 7 | ||||||||
god | 0.817 5 | ||||||||
kill | causes | die | 0.892 7 | 非对称 关系 | die | causes | lose | 0.987 6 | |
fear | 0.966 6 | ||||||||
funeral | 0.896 2 | ||||||||
letter | part of | alphabet | 0.984 3 | 逆关系 | alphabet | form of | letter | 0.871 6 | |
script | 0.844 7 | ||||||||
rudiment | 0.828 4 | ||||||||
NL27k | Toyota | Competes with | General Motors | 0.929 2 | 传递 关系 | Toyota | Competes with | Chrysler | 0.967 4 |
General Motors | Chrysler | 0.999 9 | BMW | 0.953 2 | |||||
General Motors | BMW | 0.991 2 | Ford | 0.950 4 |
Tab. 4 Approximate reasoning verification for partial logical relations
数据集 | 原始不确定KG | 逻辑 关系 | 链接预测的不确定KG | ||||||
---|---|---|---|---|---|---|---|---|---|
头实体 | 关系 | 尾实体 | 置信度 | 头实体 | 关系 | 尾实体 | 置信度 | ||
CN15k | paradise | synonym | heaven | 0.984 3 | 对称 关系 | heaven | synonym | paradise | 0.841 5 |
eden | 0.937 7 | ||||||||
god | 0.817 5 | ||||||||
kill | causes | die | 0.892 7 | 非对称 关系 | die | causes | lose | 0.987 6 | |
fear | 0.966 6 | ||||||||
funeral | 0.896 2 | ||||||||
letter | part of | alphabet | 0.984 3 | 逆关系 | alphabet | form of | letter | 0.871 6 | |
script | 0.844 7 | ||||||||
rudiment | 0.828 4 | ||||||||
NL27k | Toyota | Competes with | General Motors | 0.929 2 | 传递 关系 | Toyota | Competes with | Chrysler | 0.967 4 |
General Motors | Chrysler | 0.999 9 | BMW | 0.953 2 | |||||
General Motors | BMW | 0.991 2 | Ford | 0.950 4 |
1 | CHEN X, JIA S, XIANG Y. A review: knowledge reasoning over knowledge graph [J]. Expert Systems with Applications, 2020, 141: 112948 |
2 | MITCHELL T, COHEN W, HRUSCHKA E, et al. Never-ending learning [J]. Communications of the ACM, 2018, 61(5): 103-115. |
3 | WU W, LI H, WANG H, et al. Probase: a probabilistic taxonomy for text understanding [C]// Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2012: 481-492. |
4 | SPEER R, CHIN J, HAVASI C. ConceptNet 5.5: an open multilingual graph of general knowledge [C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 4444-4451. |
5 | WANG Q, MAO Z, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications [J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743 |
6 | 刘知远,孙茂松,林衍凯,等.知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2): 247-261. |
LIU Z Y, SUN M S, LIN Y K, et al. Knowledge representation learning: a review [J]. Journal of Computer Research and Development, 2016, 53(2): 247-261. | |
7 | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2013: 2787–2795. |
8 | YANG B, W-T YIH, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. (2015-08-29)[2023-05-30]. . |
9 | NICKEL M, TRESP V, H-P KRIEGEL. A three-way model for collective learning on multi-relational data [C]// Proceedings of the 28th International Conference on Machine Learning. Madison: Omnipress, 2011: 809-816. |
10 | CHEN X, CHEN M, SHI W, et al. Embedding uncertain knowledge graphs [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 3363-3370. |
11 | CHEN Z-M, YEH M-Y, T-W KUO. PASSLEAF: a pool-based semi-supervised learning framework for uncertain knowledge graph embedding[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4019-4026. |
12 | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 2071-2080. |
13 | JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 33(2): 494-514. |
14 | WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes [C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1112-1119. |
15 | JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2015: 687-696. |
16 | LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion [C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 2181-2187. |
17 | SUN Z, DENG Z-H, NIE J-Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[EB/OL]. [2023-05-30]. . |
18 | ZHANG Z, CAI J, ZHANG Y, et al. Learning hierarchy-aware knowledge graph embeddings for link prediction [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 3065-3072. |
19 | LU H, HU H, LIN X. DensE: an enhanced non-commutative representation for knowledge graph embedding with adaptive semantic hierarchy [J]. Neurocomputing, 2022, 476: 115-125. |
20 | ZHANG Q, WANG R, YANG J, et al. Structural context-based knowledge graph embedding for link prediction[J]. Neurocomputing, 2022, 470: 109-120. |
21 | ZHANG Y, YAO Q, DAI W, et al. AutoSF: searching scoring functions for knowledge graph embedding [C]// Proceedings of the 2020 IEEE 36th International Conference on Data Engineering. Piscataway: IEEE, 2020: 433-444. |
22 | FAN M, ZHOU Q, ZHENG T F. Learning embedding representations for knowledge inference on imperfect and incomplete repositories [C]// Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence. Piscataway: IEEE, 2016: 42-48. |
23 | KERTKEIDKACHORN N, LIU X, ICHISE R. GTransE: generalizing translation-based model on uncertain knowledge graph embedding [C]// Proceedings of the 2019 Annual Conference of the Japanese Society for Artificial Intelligence. Cham: Springer, 2019: 170-178. |
24 | HU J, CHENG R, HUANG Z, et al. On embedding uncertain graphs[C]// Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 157-166. |
25 | PAI S, COSTABELLO L. Learning embeddings from knowledge graphs with numeric edge attributes [C/OL]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021: 2869-2875. |
26 | YANG S, ZHANG W, TANG R, et al. Approximate inferring with confidence predicting based on uncertain knowledge graph embedding [J]. Information Sciences, 2022, 609: 679-690. |
27 | CHEN X, BORATKO M, CHEN M, et al. Probabilistic box embeddings for uncertain knowledge graph reasoning[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 882-893. |
28 | ABBOUD R, CEYLAN I I, LUKASIEWICZ T, et al. BoxE: a box embedding model for knowledge base completion [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 9649-9661. |
29 | 徐遥,何世柱,刘康,等.基于Beta分布和半监督学习的非确定性知识图谱嵌入模型[J].中文信息学报, 2022, 36(10):54-62. |
XU Y, HE S Z, LIU K, et al. Uncertain knowledge graph embedding by Beta distribution and semi-supervised learning [J]. Journal of Chinese Information Processing, 2022, 36(10):54-62. | |
30 | REN H Y, LESKOVEC J. Beta embeddings for multi-hop logical reasoning in knowledge graphs[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 19716-19726. |
31 | LI J, LI G. Analysis of semantic-based knowledge graph embedding models in uncertainty knowledge graphs[C]// Proceedings of the 2022 IEEE 24th International Conference on High Performance Computing & Communications; 8th International Conference on Data Science & Systems; 20th International Conference on Smart City; 8th International Conference on Dependability in Sensor, Cloud & Big Data Systems & Application. Piscataway: IEEE, 2022: 2084-2092. |
32 | ZHANG X, MA Z. Fuzzy RDF knowledge graph embeddings through vector space model[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(3): 835-844. |
33 | LIU Q, ZHANG Q, ZHAO F, et al. Uncertain knowledge graph embedding: an effective method combining multi-relation and multi-path[J]. Frontiers of Computer Science, 2024, 18(3): 183311. |
34 | DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings [C]// Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2018: 1811-1818. |
35 | NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). Stroudsburg: ACL, 2018: 327-333. |
36 | SZKLARCZYK D, MORRIS J H, COOK H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible [J]. Nucleic Acids Research, 2016: 45(1): 362-368. |
37 | LIU T-Y. Learning to rank for information retrieval[J]. Foundations and Trends® in Information Retrieval, 2009:3(3): 225-331. |
[1] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[2] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[3] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[4] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
[5] | Wei LI, Xiaorong ZHANG, Peng CHEN, Qing LI, Changqing ZHANG. Crowd counting algorithm with multi-scale fusion based on normal inverse Gamma distribution [J]. Journal of Computer Applications, 2024, 44(7): 2243-2249. |
[6] | Yan ZHOU, Yang LI. Rectified cross pseudo supervision method with attention mechanism for stroke lesion segmentation [J]. Journal of Computer Applications, 2024, 44(6): 1942-1948. |
[7] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[8] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[9] | Wenshuo GAO, Xiaoyun CHEN. Point cloud classification network based on node structure [J]. Journal of Computer Applications, 2024, 44(5): 1471-1478. |
[10] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[11] | Lijun XU, Hui LI, Zuyang LIU, Kansong CHEN, Weixuan MA. 3D-GA-Unet: MRI image segmentation algorithm for glioma based on 3D-Ghost CNN [J]. Journal of Computer Applications, 2024, 44(4): 1294-1302. |
[12] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[13] | Jie WANG, Hua MENG. Image classification algorithm based on overall topological structure of point cloud [J]. Journal of Computer Applications, 2024, 44(4): 1107-1113. |
[14] | Ruifeng HOU, Pengcheng ZHANG, Liyuan ZHANG, Zhiguo GUI, Yi LIU, Haowen ZHANG, Shubin WANG. Iterative denoising network based on total variation regular term expansion [J]. Journal of Computer Applications, 2024, 44(3): 916-921. |
[15] | Jingxian ZHOU, Xina LI. UAV detection and recognition based on improved convolutional neural network and radio frequency fingerprint [J]. Journal of Computer Applications, 2024, 44(3): 876-882. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||