| 1 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. | 
																													
																							| 2 | SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 3859-3869. | 
																													
																							| 3 | RAJASEGARAN J, JAYASUNDARA V, JAYASEKARA S, et al. DeepCaps: going deeper with capsule networks [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10717-10725. | 
																													
																							| 4 | DE SOUSA RIBEIRO F, LEONTIDIS G, KOLLIAS S. Capsule routing via Variational Bayes [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 3749-3756. | 
																													
																							| 5 | HAHN T, PYEON M, KIM G. Self-routing capsule networks [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc. New York: ACM, 2019: 7658-7667. | 
																													
																							| 6 | MAZZIA V, SALVETTI F, CHIABERGE M. Efficient-CapsNet: capsule network with self-attention routing [J]. Scientific Reports, 2021, 11: No.14634. | 
																													
																							| 7 | GU J, TRESP V. Improving the robustness of capsule networks to image affine transformations [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7283-7291. | 
																													
																							| 8 | GEOFFREY E H, SABOUR S, FROSST N. Matrix capsules with EM routing [EB/OL]. [2023-09-10]. . | 
																													
																							| 9 | LENSSEN J E, FEY M, LIBUSCHEWSKI P. Group equivariant capsule networks [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 8858-8867. | 
																													
																							| 10 | VENKATRAMAN S, BALASUBRAMANIAN S, SARMA R R. Building deep, equivariant capsule networks [EB/OL]. [2024-04-08]. . | 
																													
																							| 11 | VENKATARAMAN S R, BALASUBRAMANIAN S, SARMA R R. Iterative collaborative routing among equivariant capsules for transformation-robust capsule networks [EB/OL]. [2023-10-08]. . | 
																													
																							| 12 | GU J, TRESP V. Interpretable graph capsule networks for object recognition [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 1469-1477. | 
																													
																							| 13 | 边小勇,费雄君,穆楠.基于尺度注意力网络的遥感图像场景分类[J].计算机应用, 2020, 40(3): 872-877. | 
																													
																							|  | BIAN X Y, FEI X J, MU N. Remote sensing image scene classification based on scale-attention network [J]. Journal of Computer Applications, 2020, 40(3): 872-877. | 
																													
																							| 14 | 边小勇,费雄君,陈春芳,等.联合一二阶池化网络学习的遥感场景分类[J].计算机应用, 2022, 42(6): 1972-1978. | 
																													
																							|  | BIAN X Y, FEI X J, CHEN C F, et al. Joint 1-2-order pooling network learning for remote sensing scene classification [J]. Journal of Computer Applications, 2022, 42(6): 1972-1978. | 
																													
																							| 15 | 陈春芳,边小勇,费雄君,等.弱监督多示例子概念学习的遥感场景分类[J].小型微型计算机系统, 2022, 43(1): 76-83. | 
																													
																							|  | CHEN C F, BIAN X Y, FEI X J, et al. Weakly supervised multi-instance sub-concept learning for remote sensing scene classification [J]. Journal of Chinese Computer Systems, 2022, 43(1): 76-83. | 
																													
																							| 16 | XIA G S, HU J, HU F, et al. AID: a benchmark data set for performance evaluation of aerial scene classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965-3981. | 
																													
																							| 17 | TAO J, ZHANG X, LUO X, et al. Adaptive capsule network [J]. Computer Vision and Image Understanding, 2022, 218: No.103405. | 
																													
																							| 18 | EVERETT M, ZHONG M, LEONTIDIS G. ProtoCaps: a fast and non-iterative capsule network routing method [EB/OL]. [2023-11-08]. . | 
																													
																							| 19 | VENKATRAMAN S R, BALASUBRAMANIAN S, SARMA R R. RobustCaps: a transformation-robust capsule network for image classification [J]. ICTACT Journal on Image and Video Processing, 2023, 13(3): 2883-2892. | 
																													
																							| 20 | HUANG W, ZHOU F. DA-CapsNet: dual attention mechanism capsule network [J]. Scientific Reports, 2020, 10: No.11383. | 
																													
																							| 21 | GU J, TRESP V, HU H. Capsule network is not more robust than convolutional network [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14304-14312. | 
																													
																							| 22 | ZENG R, QIN Y, SONG Y. A non-iterative capsule network with interdependent agreement routing [J]. Expert Systems with Applications, 2024, 238(Pt E): No.122284. | 
																													
																							| 23 | PERRONNIN F, SÁNCHEZ J, MENSINK T, et al. Improving the Fisher kernel for large-scale image classification [C]// Proceedings of the 2010 European Conference on Computer Vision, LNCS 6314. Berlin: Springer, 2010: 143-156. | 
																													
																							| 24 | LOWE D G. Distinctive image features from scale-invariant key points [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. | 
																													
																							| 25 | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. | 
																													
																							| 26 | ZENG R, SONG Y. A fast routing capsule network with improved dense blocks [J]. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4383-4392. | 
																													
																							| 27 | OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. |