| 1 | DEL GIORNO A, BAGNELL J A, HEBERT M. A discriminative framework for anomaly detection in large videos [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9909. Cham: Springer, 2016: 334-349. | 
																													
																							| 2 | IONESCU R T, SMEUREANU S, ALEXE B, et al. Unmasking the abnormal events in video [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2914-2922. | 
																													
																							| 3 | HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 733-742. | 
																													
																							| 4 | LUO W, LIU W, GAO S. A revisit of sparse coding based anomaly detection in stacked RNN framework [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 341-349. | 
																													
																							| 5 | REN H, LIU W, OLSEN S I, et al. Unsupervised behavior-specific dictionary learning for abnormal event detection [C]// Proceedings of the 2015 British Machine Vision Conference. Durham: BMVA Press, 2015: No.28. | 
																													
																							| 6 | LIU W, LUO W, LIAN D, et al. Future frame prediction for anomaly detection — a new baseline [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6536-6545. | 
																													
																							| 7 | GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1705-1714. | 
																													
																							| 8 | PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14360-14369. | 
																													
																							| 9 | SULTANI W, CHEN C, SHAH M. Real-world anomaly detection in surveillance videos [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6479-6488. | 
																													
																							| 10 | ZHANG J, QING L, MIAO J. Temporal convolutional network with complementary inner bag loss for weakly supervised anomaly detection [C]// Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 4030-4034. | 
																													
																							| 11 | ZHU Y, NEWSAM S. Motion-aware feature for improved video anomaly detection [C]// Proceedings of the 2019 British Machine Vision Conference. Durham: BMVA Press, 2019: No.19. | 
																													
																							| 12 | WAN B, FANG Y, XIA X, et al. Weakly supervised video anomaly detection via center-guided discriminative learning [C]// Proceedings of the 2020 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2020: 1-6. | 
																													
																							| 13 | ZHONG J X, LI N, KONG W, et al. Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1237-1246. | 
																													
																							| 14 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2023-06-20]. . | 
																													
																							| 15 | ZAHEER M Z, MAHMOOD A, SHIN H, et al. A self-reasoning framework for anomaly detection using video-level labels [J]. IEEE Signal Processing Letters, 2020, 27: 1705-1709. | 
																													
																							| 16 | MA H, ZHANG L. Attention-based framework for weakly supervised video anomaly detection [J]. The Journal of Supercomputing, 2022, 78(6): 8409-8429. | 
																													
																							| 17 | FENG J C, HONG F T, ZHENG W S. MIST: multiple instance self-training framework for video anomaly detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14004-14013. | 
																													
																							| 18 | LIU Y, LIU J, ZHAO M, et al. Collaborative normality learning framework for weakly supervised video anomaly detection [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(5): 2508-2512. | 
																													
																							| 19 | SONG W, KIM J, KIM J. Weakly supervised video anomaly detection with temporal attention module [C]// Proceedings of the 37th International Technical Conference on Circuits/Systems, Computers and Communications. Piscataway: IEEE, 2022: 1-4. | 
																													
																							| 20 | ZHANG D, HUANG C, LIU C, et al. Weakly supervised video anomaly detection via transformer-enabled temporal relation learning [J]. IEEE Signal Processing Letters, 2022, 29: 1197-1201. | 
																													
																							| 21 | KAMOONA A M, GOSTAR A K, BAB-HADIASHAR A, et al. Multiple instance-based video anomaly detection using deep temporal encoding-decoding [J]. Expert Systems with Applications, 2023, 214: No.119079. | 
																													
																							| 22 | CARREIRA J, ZISSERMAN A. Quo Vadis, action recognition? a new model and the kinetics dataset [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4724-4733. | 
																													
																							| 23 | WU P, LIU J, SHI Y, et al. Not only look, but also listen: learning multimodal violence detection under weak supervision [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12375. Cham: Springer, 2020: 322-339. |