Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (7): 2253-2261.DOI: 10.11772/j.issn.1001-9081.2024070956
• Data science and technology • Previous Articles Next Articles
Shujun GUO(), Weijun REN, Qianqian CHEN, Guangfei YOU
Received:
2024-07-09
Revised:
2024-10-04
Accepted:
2024-10-09
Online:
2025-07-10
Published:
2025-07-10
Contact:
Shujun GUO
About author:
GUO Shujun, born in 2000, M. S. candidate. Her research interests include intelligent transportation, traffic status recognition and prediction.Supported by:
通讯作者:
郭书君
作者简介:
郭书君(2000—),女,四川达州人,硕士研究生,CCF会员,主要研究方向:智能交通、交通状态识别与预测 sjguo@chd.edu.cn基金资助:
CLC Number:
Shujun GUO, Weijun REN, Qianqian CHEN, Guangfei YOU. Real-time prediction of traffic status based on clustering multivariate time series model[J]. Journal of Computer Applications, 2025, 45(7): 2253-2261.
郭书君, 任卫军, 陈倩倩, 游广飞. 基于聚类多变量时间序列模型的交通状态实时预测[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2253-2261.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024070956
聚类算法 | 轮廓系数 | Davies-Bouldin指数 | Calinski-Harabasz指数 | 目标函数 |
---|---|---|---|---|
FCM | 0.374 180 211 | 0.941 851 020 | 2 954.486 441 | 13.152 365 85 |
KMeans++-FCM | 0.376 032 070 | 1.042 522 776 | 2 214.476 676 | 17.014 337 58 |
PSO-FCM[ | 13.134 278 60 | |||
DE-FCM | 0.374 475 615 | 0.938 586 652 | 2 957.567 658 | 13.152 172 09 |
AC-FCM | 0.374 475 615 | 0.938 586 652 | 2 957.567 658 | 13.152 172 09 |
ABC-FCM | 0.408 400 850 | 0.919 409 954 | 3 044.087 693 | 13.124 493 50 |
SG-FCM | 0.413 689 585 | 0.895 056 244 | 3 075.347 074 |
Tab. 1 Clustering effects of different algorithms
聚类算法 | 轮廓系数 | Davies-Bouldin指数 | Calinski-Harabasz指数 | 目标函数 |
---|---|---|---|---|
FCM | 0.374 180 211 | 0.941 851 020 | 2 954.486 441 | 13.152 365 85 |
KMeans++-FCM | 0.376 032 070 | 1.042 522 776 | 2 214.476 676 | 17.014 337 58 |
PSO-FCM[ | 13.134 278 60 | |||
DE-FCM | 0.374 475 615 | 0.938 586 652 | 2 957.567 658 | 13.152 172 09 |
AC-FCM | 0.374 475 615 | 0.938 586 652 | 2 957.567 658 | 13.152 172 09 |
ABC-FCM | 0.408 400 850 | 0.919 409 954 | 3 044.087 693 | 13.124 493 50 |
SG-FCM | 0.413 689 585 | 0.895 056 244 | 3 075.347 074 |
类别颜色 | 状态信息 | 图中标注的聚类中心 | 样本数 | 样本比例/% | 聚类中心坐标 |
---|---|---|---|---|---|
橙色 | 严重拥堵(5) | Status 5 | 605 | 30.01 | (37.375 83, 448.692 11, 31.443 06) |
紫色 | 中度拥堵(4) | Status 4 | 561 | 27.83 | (56.719 58, 527.789 45, 25.505 64) |
绿色 | 轻度拥堵(3) | Status 3 | 435 | 21.58 | (60.642 46, 283.190 45, 23.226 44) |
蓝色 | 稳定流动(2) | Status 2 | 253 | 12.55 | (78.685 77, 286.191 50, 13.941 19) |
红色 | 自由流畅(1) | Status 1 | 162 | 8.04 | (83.211 55, 206.096 52, 9.553 94) |
Tab. 2 Number, proportion and clustering centers of different types of samples
类别颜色 | 状态信息 | 图中标注的聚类中心 | 样本数 | 样本比例/% | 聚类中心坐标 |
---|---|---|---|---|---|
橙色 | 严重拥堵(5) | Status 5 | 605 | 30.01 | (37.375 83, 448.692 11, 31.443 06) |
紫色 | 中度拥堵(4) | Status 4 | 561 | 27.83 | (56.719 58, 527.789 45, 25.505 64) |
绿色 | 轻度拥堵(3) | Status 3 | 435 | 21.58 | (60.642 46, 283.190 45, 23.226 44) |
蓝色 | 稳定流动(2) | Status 2 | 253 | 12.55 | (78.685 77, 286.191 50, 13.941 19) |
红色 | 自由流畅(1) | Status 1 | 162 | 8.04 | (83.211 55, 206.096 52, 9.553 94) |
时间 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | 状态值 | SI值 |
---|---|---|---|---|---|
2023-12-08T00:00 | 78.85 | 232 | 12.99 | 2 | 1.90 |
2023-12-08T03:05 | 82.97 | 169 | 7.77 | 1 | 1.19 |
2023-12-08T06:25 | 83.75 | 291 | 10.74 | 2 | 1.84 |
2023-12-08T08:35 | 39.28 | 549 | 34.89 | 5 | 5.39 |
2023-12-08T12:35 | 52.48 | 459 | 28.99 | 4 | 4.82 |
2023-12-08T17:40 | 55.51 | 439 | 22.47 | 4 | 4.22 |
2023-12-08T23:15 | 72.72 | 335 | 17.99 | 2 | 2.64 |
Tab. 3 Real-time traffic status data classification
时间 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | 状态值 | SI值 |
---|---|---|---|---|---|
2023-12-08T00:00 | 78.85 | 232 | 12.99 | 2 | 1.90 |
2023-12-08T03:05 | 82.97 | 169 | 7.77 | 1 | 1.19 |
2023-12-08T06:25 | 83.75 | 291 | 10.74 | 2 | 1.84 |
2023-12-08T08:35 | 39.28 | 549 | 34.89 | 5 | 5.39 |
2023-12-08T12:35 | 52.48 | 459 | 28.99 | 4 | 4.82 |
2023-12-08T17:40 | 55.51 | 439 | 22.47 | 4 | 4.22 |
2023-12-08T23:15 | 72.72 | 335 | 17.99 | 2 | 2.64 |
预测步长 | FSNet[ | LightTS[ | Informer[ | StemGNN[ | SCINet[ | MTS-EnhanceNet | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
6 | 0.826 8 | 0.752 8 | 0.496 9 | 0.479 9 | 0.432 1 | 0.451 8 | 0.487 9 | 0.510 6 | 0.305 3 | 0.382 6 | ||
12 | 1.111 2 | 0.909 7 | 0.439 9 | 0.446 9 | 0.446 6 | 0.454 9 | 0.545 5 | 0.536 5 | 0.270 2 | 0.388 9 |
Tab. 4 Comparative analysis of Mean Squared Error (MSE) and Mean Absolute Error (MAE) of different models
预测步长 | FSNet[ | LightTS[ | Informer[ | StemGNN[ | SCINet[ | MTS-EnhanceNet | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
6 | 0.826 8 | 0.752 8 | 0.496 9 | 0.479 9 | 0.432 1 | 0.451 8 | 0.487 9 | 0.510 6 | 0.305 3 | 0.382 6 | ||
12 | 1.111 2 | 0.909 7 | 0.439 9 | 0.446 9 | 0.446 6 | 0.454 9 | 0.545 5 | 0.536 5 | 0.270 2 | 0.388 9 |
数据类型 | 时间 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | SI值 |
---|---|---|---|---|---|
回溯窗口 (window=288) | 2023-12-05T14:55 | 51.42 | 565 | 30.53 | 4.69 |
2023-12-05T15:00 | 61.13 | 368 | 24.13 | 3.84 | |
2023-12-05T15:05 | 55.86 | 479 | 31.00 | 3.96 | |
| |||||
2023-12-06T14:50 | 67.69 | 315 | 23.07 | 3.29 | |
预测窗口 (H=12) | 2023-12-06T14:55 | 61.35 | 352 | 22.50 | 3.82 |
2023-12-06T15:00 | 55.62 | 388 | 19.82 | 3.10 | |
| |||||
2023-12-06T15:50:00 | 31.83 | 481 | 38.04 | 5.61 |
Tab. 5 Real-time prediction results of traffic flow parameters
数据类型 | 时间 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | SI值 |
---|---|---|---|---|---|
回溯窗口 (window=288) | 2023-12-05T14:55 | 51.42 | 565 | 30.53 | 4.69 |
2023-12-05T15:00 | 61.13 | 368 | 24.13 | 3.84 | |
2023-12-05T15:05 | 55.86 | 479 | 31.00 | 3.96 | |
| |||||
2023-12-06T14:50 | 67.69 | 315 | 23.07 | 3.29 | |
预测窗口 (H=12) | 2023-12-06T14:55 | 61.35 | 352 | 22.50 | 3.82 |
2023-12-06T15:00 | 55.62 | 388 | 19.82 | 3.10 | |
| |||||
2023-12-06T15:50:00 | 31.83 | 481 | 38.04 | 5.61 |
时间 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | SI值 | 状态信息 |
---|---|---|---|---|---|
2023-12-06T14:55 | 61.35 | 352 | 22.50 | 3.82 | 轻度拥堵(3) |
2023-12-06T15:00 | 55.62 | 388 | 19.82 | 3.10 | 轻度拥堵(3) |
| |||||
2023-12-06T15:50 | 31.83 | 481 | 38.04 | 5.61 | 严重拥堵(5) |
Tab. 6 Result analysis of prediction values
时间 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | SI值 | 状态信息 |
---|---|---|---|---|---|
2023-12-06T14:55 | 61.35 | 352 | 22.50 | 3.82 | 轻度拥堵(3) |
2023-12-06T15:00 | 55.62 | 388 | 19.82 | 3.10 | 轻度拥堵(3) |
| |||||
2023-12-06T15:50 | 31.83 | 481 | 38.04 | 5.61 | 严重拥堵(5) |
时间 | 数据类型 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | SI值 |
---|---|---|---|---|---|
2023-12-06T15:00:00 | 真实数据 | 48.41 | 338 | 25.28 | 3.82 |
在线学习前 | 55.62 | 388 | 19.82 | 3.10 | |
在线学习后 | 54.48 | 331 | 21.26 | 3.31 | |
2023-12-06T15:05:00 | 真实数据 | 53.43 | 462 | 24.46 | 4.89 |
在线学习前 | 43.46 | 587 | 29.05 | 5.51 | |
在线学习后 | 49.39 | 501 | 26.40 | 5.18 | |
2023-12-06T15:10:00 | 真实数据 | 57.64 | 479 | 29.01 | 4.63 |
在线学习前 | 65.75 | 465 | 30.53 | 4.45 | |
在线学习后 | 62.07 | 467 | 30.03 | 4.52 | |
| |||||
2023-12-06T15:50:00 | 真实数据 | 35.17 | 477 | 32.22 | 5.49 |
在线学习前 | 31.83 | 481 | 38.04 | 5.61 | |
在线学习后 | 41.07 | 471 | 33.62 | 5.19 |
Tab. 7 Comparative analysis of true value and prediction values before and after online learning
时间 | 数据类型 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | SI值 |
---|---|---|---|---|---|
2023-12-06T15:00:00 | 真实数据 | 48.41 | 338 | 25.28 | 3.82 |
在线学习前 | 55.62 | 388 | 19.82 | 3.10 | |
在线学习后 | 54.48 | 331 | 21.26 | 3.31 | |
2023-12-06T15:05:00 | 真实数据 | 53.43 | 462 | 24.46 | 4.89 |
在线学习前 | 43.46 | 587 | 29.05 | 5.51 | |
在线学习后 | 49.39 | 501 | 26.40 | 5.18 | |
2023-12-06T15:10:00 | 真实数据 | 57.64 | 479 | 29.01 | 4.63 |
在线学习前 | 65.75 | 465 | 30.53 | 4.45 | |
在线学习后 | 62.07 | 467 | 30.03 | 4.52 | |
| |||||
2023-12-06T15:50:00 | 真实数据 | 35.17 | 477 | 32.22 | 5.49 |
在线学习前 | 31.83 | 481 | 38.04 | 5.61 | |
在线学习后 | 41.07 | 471 | 33.62 | 5.19 |
[1] | 陈钊正,吴聪.多变量聚类分析的高速公路交通流状态实时评估[J].交通运输系统工程与信息,2018, 18(3): 225-233. |
CHEN Z Z, WU C. A method of traffic state estimation for expressway based on multivariate clustering analysis [J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 225-233. | |
[2] | YUAN Y, ZHANG W, YANG X, et al. Traffic state classification and prediction based on trajectory data [J]. Journal of Intelligent Transportation Systems, 2021(Latest Articles): 1-15. |
[3] | ZHANG L, JIA Y, SUN D, et al. A fuzzy weighted c-means classification method for traffic flow state division [J]. Modern Physics Letters B, 2021, 35(20): No.2150341. |
[4] | TIŠLJARIĆ L, RIBIĆ F, MAJSTOROVIĆ Ž, et al. Speed transition matrix feature extraction for traffic state estimation using machine learning algorithms [M]// PETROVIĆ M, NOVAČKO L, BOŽIĆ D, et al. The science and development of transport — ZIRP 2021. Cham: Springer, 2022: 61-74. |
[5] | REZA S, FERREIRA M C, MACHADO J J M, et al. Traffic state prediction using one-dimensional convolution neural networks and long short-term memory [J]. Applied Sciences, 2022, 12(10): No.5149. |
[6] | KHAJEH HOSSEINI M, TALEBPOUR A. Probabilistic traffic state prediction based on vehicle trajectory data [J]. Data Science for Transportation, 2023, 5: No.22. |
[7] | USAMA M, MA R, HART J, et al. Physics-Informed Neural Networks (PINNs)-based traffic state estimation: an application to traffic network [J]. Algorithms, 2022, 15(12): No.447. |
[8] | GUPTA A, MAURYA M K, GOYAL N, et al. ISTGCN: integrated spatio-temporal modeling for traffic prediction using traffic graph convolution network [J]. Applied Intelligence, 2023, 53(23): 29153-29168. |
[9] | 陈德望.基于模糊聚类的快速路交通流状况分类[J].交通运输系统工程与信息,2005, 5(1): 62-67. |
CHEN D W. Classification of traffic flow situation of urban freeways based on fuzzy clustering [J]. Journal of Transportation Systems Engineering and Information Technology, 2005, 5(1): 62-67. | |
[10] | REILLY W. Highway capacity manual 2000 [J]. TR News, 1997, 193: 22-23. |
[11] | 李相勇,蒋葛夫.城市道路服务水平的模糊综合评判[J].交通运输系统工程与信息,2002, 2(3): 48-50. |
LI X Y, JIANG G F. Fuzzy comprehensive assessment of service level for urban roads [J]. Journal of Transportation Systems Engineering and Information Technology, 2002, 2(3): 48-50. | |
[12] | MAITRA B, SIKDAR P K, DHINGRA S L. Modeling congestion on urban roads and assessing level of service [J]. Journal of Transportation Engineering, 1999, 125(6): 508-514. |
[13] | National Academies of Sciences, Engineering, and Medicine. Highway capacity manual: a guide for multimodal mobility analysis [M]. 7th ed. Washington: National Academies Press, 2022. |
[14] | BAEK J. Highway regional classification method based on traffic flow characteristics for highway safety assessment [J]. Sensors, 2022, 22(1): No.86. |
[15] | 周涛,陆惠玲.数据挖掘中聚类算法研究进展[J].计算机工程与应用,2012, 48(12): 100-111. |
ZHOU T, LU H L. Clustering algorithm research advances on data mining [J]. Computer Engineering and Applications, 2012, 48(12): 100-111. | |
[16] | KRASNOV D, DAVIS D, MALOTT K, et al. Fuzzy c-means clustering: a review of applications in breast cancer detection [J]. Entropy, 2023, 25(7): No.1021. |
[17] | DING W, CHANG S, BAO S, et al. Accurate RSS-based localization using an opposition-based learning simulated annealing algorithm [EB/OL]. [2024-05-19]. . |
[18] | ALAM T, QAMAR S, DIXIT A, et al. Genetic algorithm: reviews, implementations, and applications [EB/OL]. [2024-05-22]. . |
[19] | WU J, TSANG E C C. A new three-way multi-attribute decision making based on regret theory and TOPSIS model [C]// Proceedings of the 2022 International Conference on Wavelet Analysis and Pattern Recognition. Piscataway: IEEE, 2022: 66-71. |
[20] | 杜崇.高速公路实时交通状态判别方法研究[D].北京:北京交通大学,2017. |
DU C. Research on real-time highway traffic states identification [D]. Beijing: Beijing Jiaotong University, 2017. | |
[21] | 周如心.高速公路交通流状态辨识与拥堵预测方法研究[D].南京:南京理工大学,2021. |
ZHOU R X. Research on the method of highway traffic flow identification and congestion forecast [D]. Nanjing: Nanjing University of Science and Technology, 2021. | |
[22] | YANG Z, HAO L, LIU Y, et al. Identification of expressway traffic states based on the enhanced FCM algorithm [C]// Proceedings of the 2022 International Conference on 3D Imaging Technology — 3D Imaging — Multidimensional Signal Processing and Deep Learning: Images, Augmented Reality and Information Technologies, Volume 1, SIST 349. Singapore: Springer, 2023: 167-179. |
[23] | BHAGAT-CONWAY M W, ZHANG S. Rush hour-and-a-half: traffic is spreading out post-lockdown [J]. PLoS ONE, 2023, 18(9): No.e0290534. |
[24] | KÁROLY A I, FULLÉR R, GALAMBOS P. Unsupervised clustering for deep learning: a tutorial survey [J]. Acta Polytechnica Hungarica, 2018, 15(8): 29-53. |
[25] | ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 11106-11115. |
[26] | BELLO I, ZOPH B, LE Q, et al. Attention augmented convolutional networks [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3285-3294. |
[27] | CHEE K J, RAMLI D A. Electrocardiogram biometrics using Transformer’s self-attention mechanism for sequence pair feature extractor and flexible enrollment scope identification [J]. Sensors, 2022, 22(9): No.3446. |
[28] | OH B D, KIM Y S. Lightweight text classifier using sinusoidal positional encoding [C]// Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2020: 63-69. |
[29] | HAZAN E. Introduction to online convex optimization [J]. Foundations and Trends in Optimization, 2016, 2(3/4): 157-325. |
[30] | KUMAR A, SHEN R, BUBECK S, et al. How to fine-tune vision models with SGD [EB/OL]. [2024-05-28]. . |
[31] | RUDER S. An overview of gradient descent optimization algorithms[EB/OL].[2024-05-30].. |
[32] | HU J, YIN H, WEI G, et al. An improved FCM clustering algorithm with adaptive weights based on PSO-TVAC algorithm [J]. Applied Intelligence, 2022, 52(8): 9521-9536. |
[33] | BEZDEK J C. Pattern recognition with fuzzy objective function algorithms, AAPR [M]. New York: Springer, 1981. |
[34] | PHAM Q, LIU C, SAHOO D, et al. Learning fast and slow for online time series forecasting [EB/OL]. [2024-06-10]. . |
[35] | ZHANG T, ZHANG Y, CAO W, al e t. Less is more: fast multivariate time series forecasting with light sampling-oriented MLP structures [EB/OL]. [2024-06-13]. . |
[36] | CAO D, WANG Y, DUAN J, et al. Spectral temporal graph neural network for multivariate time-series forecasting [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 17766-17778. |
[37] | LIU M, ZENG A, CHEN M, et al. SCINet: time series modeling and forecasting with sample convolution and interaction [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 5816-5828. |
[1] | Zhangjie XU, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Nested named entity recognition combined with boundary generation by multi-objective learning [J]. Journal of Computer Applications, 2025, 45(7): 2229-2236. |
[2] | Danyang CHEN, Changlun ZHANG. Multi-scale decorrelation graph convolutional network model [J]. Journal of Computer Applications, 2025, 45(7): 2180-2187. |
[3] | Yuelan ZHANG, Jing SU, Hangyu ZHAO, Baili YANG. Multi-view knowledge-aware and interactive distillation recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(7): 2211-2220. |
[4] | Yingjun ZHANG, Weiwei YAN, Binhong XIE, Rui ZHANG, Wangdong LU. Gradient-discriminative and feature norm-driven open-world object detection [J]. Journal of Computer Applications, 2025, 45(7): 2203-2210. |
[5] | Qiaoling QI, Xiaoxiao WANG, Qianqian ZHANG, Peng WANG, Yongfeng DONG. Label noise adaptive learning algorithm based on meta-learning [J]. Journal of Computer Applications, 2025, 45(7): 2113-2122. |
[6] | Huibin WANG, Zhan’ao HU, Jie HU, Yuanwei XU, Bo WEN. Time series forecasting model based on segmented attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2262-2268. |
[7] | Yongpeng TAO, Shiqi BAI, Zhengwen ZHOU. Neural architecture search for multi-tissue segmentation using convolutional and transformer-based networks in glioma segmentation [J]. Journal of Computer Applications, 2025, 45(7): 2378-2386. |
[8] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
[9] | Zimo ZHANG, Xuezhuan ZHAO. Multi-scale sparse graph guided vision graph neural networks [J]. Journal of Computer Applications, 2025, 45(7): 2188-2194. |
[10] | Erkang XIANG, Rong HUANG, Aihua DONG. Open set recognition method with open generation and feature optimization [J]. Journal of Computer Applications, 2025, 45(7): 2195-2202. |
[11] | Zonghang WU, Dong ZHANG, Guanyu LI. Multimodal fusion recommendation algorithm based on joint self-supervised learning [J]. Journal of Computer Applications, 2025, 45(6): 1858-1868. |
[12] | Tianchen HUA, Xiaoning MA, Hui ZHI. Portable executable malware static detection model based on shallow artificial neural network [J]. Journal of Computer Applications, 2025, 45(6): 1911-1921. |
[13] | Chaoying JIANG, Qian LI, Ning LIU, Lei LIU, Lizhen CUI. Readmission prediction model based on graph contrastive learning [J]. Journal of Computer Applications, 2025, 45(6): 1784-1792. |
[14] | Lu CHEN, Huaiyao WANG, Jingyang LIU, Tao YAN, Bin CHEN. Robotic grasp detection with feature fusion of spatial-Fourier domain information under low-light environments [J]. Journal of Computer Applications, 2025, 45(5): 1686-1693. |
[15] | Dan WANG, Wenhao ZHANG, Lijuan PENG. Channel estimation of reconfigurable intelligent surface assisted communication system based on deep learning [J]. Journal of Computer Applications, 2025, 45(5): 1613-1618. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||