Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (7): 2195-2202.DOI: 10.11772/j.issn.1001-9081.2024060862
• Artificial intelligence • Previous Articles Next Articles
Erkang XIANG1, Rong HUANG1,2, Aihua DONG1,2()
Received:
2024-06-25
Revised:
2024-09-14
Accepted:
2024-09-18
Online:
2025-07-10
Published:
2025-07-10
Contact:
Aihua DONG
About author:
XIANG Erkang, born in 2000, M. S. candidate. His research interests include image recognition, open set recognition.Supported by:
通讯作者:
董爱华
作者简介:
向尔康(2000—),男(土家族),湖南湘西人,硕士研究生,主要研究方向:图像识别、开集识别基金资助:
CLC Number:
Erkang XIANG, Rong HUANG, Aihua DONG. Open set recognition method with open generation and feature optimization[J]. Journal of Computer Applications, 2025, 45(7): 2195-2202.
向尔康, 黄荣, 董爱华. 开放生成与特征优化的开集识别方法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2195-2202.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024060862
数据集 | 方法 | AUROC | 准确率 | OSCR | 数据集 | 方法 | AUROC | 准确率 | OSCR |
---|---|---|---|---|---|---|---|---|---|
MNIST | Softmax | 97.9 | 99.5 | 99.2 | CIFAR+10 | Softmax | 81.6 | 96.3 | 90.9 |
Openmax | 98.0 | 99.5 | — | Openmax | 81.7 | — | — | ||
G-OpenMax | 98.8 | 99.6 | — | G-OpenMax | 83.8 | — | — | ||
CROSR | 99.1 | 99.2 | — | CROSR | 91.2 | — | — | ||
C2AE | 98.8 | 99.0 | 99.6 | C2AE | 95.5 | — | — | ||
RPL | 98.8 | 99.8 | 99.4 | RPL | 84.2 | 96.5 | 91.8 | ||
GCPL | 99.3 | 99.8 | 99.1 | GCPL | 88.1 | 96.4 | 90.9 | ||
ARPL | 99.6 | 99.7 | 99.4 | ARPL | 96.5 | 96.4 | 93.5 | ||
ARPL+CS | 99.7 | 99.7 | 99.5 | ARPL+CS | 97.1 | 97.1 | 94.7 | ||
ODL | 99.5 | — | 99.4 | ODL | 89.1 | — | 92.5 | ||
ODL+ | 99.6 | — | 99.5 | ODL+ | 91.1 | — | 93.2 | ||
OGFO | 99.7 | 99.8 | 99.5 | OGFO | 96.8 | 97.4 | 94.2 | ||
SVHN | Softmax | 88.5 | 94.7 | 92.8 | CIFAR+50 | Softmax | 80.5 | 96.4 | 88.5 |
Openmax | 89.3 | 94.7 | — | Openmax | 79.6 | — | — | ||
G-OpenMax | 90.8 | 94.8 | — | G-OpenMax | 82.7 | — | — | ||
CROSR | 89.9 | 94.5 | — | CROSR | 90.5 | — | — | ||
C2AE | 92.0 | 95.3 | 95.1 | C2AE | 93.7 | — | — | ||
RPL | 93.2 | 96.9 | 93.6 | RPL | 83.2 | 96.6 | 89.6 | ||
GCPL | 93.2 | 96.7 | 92.8 | GCPL | 87.9 | 96.4 | 88.5 | ||
ARPL | 96.3 | 96.6 | 94.0 | ARPL | 94.3 | 96.4 | 91.6 | ||
ARPL+CS | 96.7 | 96.7 | 94.3 | ARPL+CS | 95.1 | 97.2 | 92.9 | ||
ODL | 94.3 | — | 93.4 | ODL | 88.3 | — | 89.8 | ||
ODL+ | 95.4 | — | 94.1 | ODL+ | 90.6 | — | 90.3 | ||
OGFO | 97.3 | 97.2 | 94.5 | OGFO | 94.9 | 97.5 | 93.1 | ||
CIFAR10 | Softmax | 67.6 | 80.1 | 83.8 | TinyImageNet | Softmax | 57.7 | 73.3 | 60.8 |
Openmax | 69.3 | 80.1 | — | Openmax | 57.6 | — | — | ||
G-OpenMax | 69.4 | 81.6 | — | G-OpenMax | 58.6 | — | — | ||
CROSR | 88.3 | 93.0 | — | CROSR | 58.9 | — | — | ||
C2AE | 89.5 | 93.8 | 82.1 | C2AE | 74.8 | — | — | ||
RPL | 82.7 | 94.6 | 85.2 | RPL | 68.8 | 62.8 | 53.2 | ||
GCPL | 84.8 | 92.4 | 83.8 | GCPL | 63.9 | 62.3 | 59.3 | ||
ARPL | 90.1 | 94.5 | 86.6 | ARPL | 76.2 | 76.1 | 62.3 | ||
ARPL+CS | 90.7 | 95.4 | 87.9 | ARPL+CS | 78.2 | 79.8 | 65.9 | ||
ODL | 85.7 | — | 84.8 | ODL | 76.4 | — | 64.3 | ||
ODL+ | 88.5 | — | 86.9 | ODL+ | 74.6 | — | 59.2 | ||
OGFO | 90.6 | 96.1 | 87.5 | OGFO | 79.6 | 82.7 | 67.8 |
Tab. 1 Comparison of AUROC, accuracy and OSCR performance of different methods
数据集 | 方法 | AUROC | 准确率 | OSCR | 数据集 | 方法 | AUROC | 准确率 | OSCR |
---|---|---|---|---|---|---|---|---|---|
MNIST | Softmax | 97.9 | 99.5 | 99.2 | CIFAR+10 | Softmax | 81.6 | 96.3 | 90.9 |
Openmax | 98.0 | 99.5 | — | Openmax | 81.7 | — | — | ||
G-OpenMax | 98.8 | 99.6 | — | G-OpenMax | 83.8 | — | — | ||
CROSR | 99.1 | 99.2 | — | CROSR | 91.2 | — | — | ||
C2AE | 98.8 | 99.0 | 99.6 | C2AE | 95.5 | — | — | ||
RPL | 98.8 | 99.8 | 99.4 | RPL | 84.2 | 96.5 | 91.8 | ||
GCPL | 99.3 | 99.8 | 99.1 | GCPL | 88.1 | 96.4 | 90.9 | ||
ARPL | 99.6 | 99.7 | 99.4 | ARPL | 96.5 | 96.4 | 93.5 | ||
ARPL+CS | 99.7 | 99.7 | 99.5 | ARPL+CS | 97.1 | 97.1 | 94.7 | ||
ODL | 99.5 | — | 99.4 | ODL | 89.1 | — | 92.5 | ||
ODL+ | 99.6 | — | 99.5 | ODL+ | 91.1 | — | 93.2 | ||
OGFO | 99.7 | 99.8 | 99.5 | OGFO | 96.8 | 97.4 | 94.2 | ||
SVHN | Softmax | 88.5 | 94.7 | 92.8 | CIFAR+50 | Softmax | 80.5 | 96.4 | 88.5 |
Openmax | 89.3 | 94.7 | — | Openmax | 79.6 | — | — | ||
G-OpenMax | 90.8 | 94.8 | — | G-OpenMax | 82.7 | — | — | ||
CROSR | 89.9 | 94.5 | — | CROSR | 90.5 | — | — | ||
C2AE | 92.0 | 95.3 | 95.1 | C2AE | 93.7 | — | — | ||
RPL | 93.2 | 96.9 | 93.6 | RPL | 83.2 | 96.6 | 89.6 | ||
GCPL | 93.2 | 96.7 | 92.8 | GCPL | 87.9 | 96.4 | 88.5 | ||
ARPL | 96.3 | 96.6 | 94.0 | ARPL | 94.3 | 96.4 | 91.6 | ||
ARPL+CS | 96.7 | 96.7 | 94.3 | ARPL+CS | 95.1 | 97.2 | 92.9 | ||
ODL | 94.3 | — | 93.4 | ODL | 88.3 | — | 89.8 | ||
ODL+ | 95.4 | — | 94.1 | ODL+ | 90.6 | — | 90.3 | ||
OGFO | 97.3 | 97.2 | 94.5 | OGFO | 94.9 | 97.5 | 93.1 | ||
CIFAR10 | Softmax | 67.6 | 80.1 | 83.8 | TinyImageNet | Softmax | 57.7 | 73.3 | 60.8 |
Openmax | 69.3 | 80.1 | — | Openmax | 57.6 | — | — | ||
G-OpenMax | 69.4 | 81.6 | — | G-OpenMax | 58.6 | — | — | ||
CROSR | 88.3 | 93.0 | — | CROSR | 58.9 | — | — | ||
C2AE | 89.5 | 93.8 | 82.1 | C2AE | 74.8 | — | — | ||
RPL | 82.7 | 94.6 | 85.2 | RPL | 68.8 | 62.8 | 53.2 | ||
GCPL | 84.8 | 92.4 | 83.8 | GCPL | 63.9 | 62.3 | 59.3 | ||
ARPL | 90.1 | 94.5 | 86.6 | ARPL | 76.2 | 76.1 | 62.3 | ||
ARPL+CS | 90.7 | 95.4 | 87.9 | ARPL+CS | 78.2 | 79.8 | 65.9 | ||
ODL | 85.7 | — | 84.8 | ODL | 76.4 | — | 64.3 | ||
ODL+ | 88.5 | — | 86.9 | ODL+ | 74.6 | — | 59.2 | ||
OGFO | 90.6 | 96.1 | 87.5 | OGFO | 79.6 | 82.7 | 67.8 |
数据集(未知类) | 方法 | AUROC | OSCR |
---|---|---|---|
KMNIST | Softmax | 93.8 | 96.0 |
GCPL | 85.3 | 84.2 | |
RPL | 97.4 | 74.3 | |
OGFO | 98.2 | 97.2 | |
SVHN | Softmax | 97.4 | 96.5 |
GCPL | 98.6 | 96.9 | |
RPL | 98.7 | 76.1 | |
OGFO | 98.9 | 97.7 | |
CIFAR10 | Softmax | 96.4 | 96.4 |
GCPL | 98.1 | 96.5 | |
RPL | 98.8 | 76.1 | |
OGFO | 98.7 | 96.9 |
Tab. 2 Comparison of out-of-domain experimental results with MNIST as known class and KMNIST, SVHN, and CIFAR10 as unknown classes
数据集(未知类) | 方法 | AUROC | OSCR |
---|---|---|---|
KMNIST | Softmax | 93.8 | 96.0 |
GCPL | 85.3 | 84.2 | |
RPL | 97.4 | 74.3 | |
OGFO | 98.2 | 97.2 | |
SVHN | Softmax | 97.4 | 96.5 |
GCPL | 98.6 | 96.9 | |
RPL | 98.7 | 76.1 | |
OGFO | 98.9 | 97.7 | |
CIFAR10 | Softmax | 96.4 | 96.4 |
GCPL | 98.1 | 96.5 | |
RPL | 98.8 | 76.1 | |
OGFO | 98.7 | 96.9 |
方法 | 准确率 | AUROC | OSCR |
---|---|---|---|
Centerloss | 99.5 | 99.5 | 99.2 |
Centerloss+Lvec | 99.5 | 99.2 | 99.0 |
Centerloss+Lquarter | 99.6 | 99.4 | 99.3 |
No OGAN | 99.6 | 99.6 | 99.2 |
OGFO | 99.8 | 99.7 | 99.5 |
Tab. 3 Ablation study results
方法 | 准确率 | AUROC | OSCR |
---|---|---|---|
Centerloss | 99.5 | 99.5 | 99.2 |
Centerloss+Lvec | 99.5 | 99.2 | 99.0 |
Centerloss+Lquarter | 99.6 | 99.4 | 99.3 |
No OGAN | 99.6 | 99.6 | 99.2 |
OGFO | 99.8 | 99.7 | 99.5 |
[1] | WANG J, YANG Y, MAO J, et al. CNN-RNN: a unified framework for multi-label image classification [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2285-2294. |
[2] | CHEN Z M, WEI X S, WANG P, et al. Multi-label image recognition with graph convolutional networks [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5172-5181. |
[3] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2024-04-10]. . |
[4] | 张震,王贺,宋宏旭.基于Swin Transformer和双层路由注意力的多标签图像分类算法[J].测试技术学报,2024, 38(4): 413-419. |
ZHANG Z, WANG H, SONG H X. Multi-label image classification algorithm based on Transformer [J]. Journal of Test and Measurement Technology, 2024, 38(4): 413-419. | |
[5] | 王彦情,马雷,田原.光学遥感图像舰船目标检测与识别综述[J].自动化学报,2011, 37(9): 1029-1039. |
WANG Y Q, MA L, TIAN Y. State-of-the-art of ship detection and recognition in optical remotely sensed imagery [J]. Acta Automatica Sinica, 2011, 37(9): 1029-1039. | |
[6] | 赵其昌,吴一全,苑玉彬.光学遥感图像舰船目标检测与识别方法研究进展[J].航空学报,2024, 45(8): 51-84. |
ZHAO Q C, WU Y Q, YUAN Y B. Progress of ship detection and recognition methods in optical remote sensing images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 51-84. | |
[7] | 何友,熊伟,刘俊,等.海上信息感知与融合研究进展及展望[J].火力与指挥控制,2018, 43(6): 1-10. |
HE Y, XIONG W, LIU J, et al. Review and prospect of research on maritime information perception and fusion [J]. Fire Control and Command Control, 2018, 43(6): 1-10. | |
[8] | ITTI L, KOCH C, NIEBUR E. A model of saliency based visual attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259. |
[9] | SCHEIRER W J, DE REZENDE ROCHA A, SAPKOTA A, et al. Toward open set recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(7): 1757-1772. |
[10] | SCHEIRER W J, JAIN L P, BOULT T E. Probability models for open set recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11): 2317-2324. |
[11] | JAIN L P, SCHEIRER W J, BOULT T E. Multi-class open set recognition using probability of inclusion [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8691. Cham: Springer, 2014: 393-409. |
[12] | ROZSA A, GÜNTHER M, BOULT T E, et al. Adversarial robustness: Softmax versus Openmax [C]// Proceedings of the 2017 British Machine Vision Conference. Durham: BMVA Press, 2017: No.156. |
[13] | YANG H M, ZHANG X Y, YIN F, et al. Robust classification with convolutional prototype learning [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3474-3482. |
[14] | YANG H M, ZHANG X Y, YIN F, et al. Convolutional prototype network for open set recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2358-2370. |
[15] | XIA Z, WANG P, DONG G, et al. Spatial location constraint prototype loss for open set recognition [J]. Computer Vision and Image Understanding, 2023, 229: No.103651. |
[16] | CHEN G, PENG P, WANG X, et al. Adversarial reciprocal points learning for open set recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 8065-8081. |
[17] | ZHOU D W, YE H J, ZHAN D C. Learning placeholders for open-set recognition [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4399-4408. |
[18] | KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. [2024-08-03]. . |
[19] | CHEN G, QIAO L, SHI Y, et al. Learning open set network with discriminative reciprocal points [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12348. Cham: Springer, 2020: 507-522. |
[20] | PERERA P, MORARIU V I, JAIN R, et al. Generative-discriminative feature representations for open-set recognition [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11811-11820. |
[21] | YOSHIHASHI R, SHAO W, KAWAKAMI R, et al. Classification-reconstruction learning for open-set recognition [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4011-4020. |
[22] | OZA P, PATEL V M. C2AE: class conditioned auto-encoder for open-set recognition [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2302-2311. |
[23] | LIU Z G, FU Y M, PAN Q, et al. Orientational distribution learning with hierarchical spatial attention for open set recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7): 8757-8772. |
[1] | Huibin WANG, Zhan’ao HU, Jie HU, Yuanwei XU, Bo WEN. Time series forecasting model based on segmented attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2262-2268. |
[2] | Benchen YANG, Haoran LI, Haibo JIN. Multi-focus image fusion network with cascade fusion and enhanced reconstruction [J]. Journal of Computer Applications, 2025, 45(2): 594-600. |
[3] | Rui SHI, Yong LI, Yanhan ZHU. Adversarial sample attack algorithm of modulation signal based on equalization of feature gradient [J]. Journal of Computer Applications, 2024, 44(8): 2521-2527. |
[4] | Mengmei YAN, Dongping YANG. Review of mean field theory for deep neural network [J]. Journal of Computer Applications, 2024, 44(2): 331-343. |
[5] | Xujian ZHAO, Hanglin LI. Deep neural network compression algorithm based on hybrid mechanism [J]. Journal of Computer Applications, 2023, 43(9): 2686-2691. |
[6] | Yunfei SHEN, Fei SHEN, Fang LI, Jun ZHANG. Deep neural network model acceleration method based on tensor virtual machine [J]. Journal of Computer Applications, 2023, 43(9): 2836-2844. |
[7] | Xiaolin LI, Songjia YANG. Hybrid beamforming for multi-user mmWave relay networks using deep learning [J]. Journal of Computer Applications, 2023, 43(8): 2511-2516. |
[8] | Haiyu YANG, Wenpu GUO, Kai KANG. Signal modulation recognition method based on convolutional long short-term deep neural network [J]. Journal of Computer Applications, 2023, 43(4): 1318-1322. |
[9] | LIU Xiaoyu, CHEN Huaixin, LIU Biyuan, LIN Ying, MA Teng. License plate detection algorithm in unrestricted scenes based on adaptive confidence threshold [J]. Journal of Computer Applications, 2023, 43(1): 67-73. |
[10] | GAO Yuanyuan, YU Zhenhua, DU Fang, SONG Lijuan. Unlabeled network pruning algorithm based on Bayesian optimization [J]. Journal of Computer Applications, 2023, 43(1): 30-36. |
[11] | Wentao MAO, Guifang WU, Chao WU, Zhi DOU. Animation video generation model based on Chinese impressionistic style transfer [J]. Journal of Computer Applications, 2022, 42(7): 2162-2169. |
[12] | Meng YU, Wentao HE, Xuchuan ZHOU, Mengtian CUI, Keqi WU, Wenjie ZHOU. Review of recommendation system [J]. Journal of Computer Applications, 2022, 42(6): 1898-1913. |
[13] | Quan CHEN, Li LI, Yongle CHEN, Yuexing DUAN. Adversarial attack algorithm for deep learning interpretability [J]. Journal of Computer Applications, 2022, 42(2): 510-518. |
[14] | Wenyong YUAN, Xiuguang LI, Ruifeng LI, Zhengge YI, Xiaoyuan YANG. Trusted integrity verification scheme of cloud data without bilinear pairings [J]. Journal of Computer Applications, 2022, 42(12): 3769-3774. |
[15] | Anyi WANG, Heng ZHANG. Multi-input multi-output intelligent receiver model based on multi-label classification algorithm [J]. Journal of Computer Applications, 2022, 42(10): 3124-3129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||