Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1582-1588.DOI: 10.11772/j.issn.1001-9081.2024050672
• Cyber security • Previous Articles
Aoling LIU1, Wuyang SHAN1(), Junying QIU2, Mao TIAN3, Jun LI1
Received:
2024-05-27
Revised:
2024-09-30
Accepted:
2024-10-25
Online:
2024-11-05
Published:
2025-05-10
Contact:
Wuyang SHAN
About author:
LIU Aoling, born in 1999, M. S. candidate. Her research interests include image forensics, deep learning.Supported by:
通讯作者:
单武扬
作者简介:
刘澳龄(1999—),女,四川内江人,硕士研究生,CCF会员,主要研究方向:图像取证、深度学习基金资助:
CLC Number:
Aoling LIU, Wuyang SHAN, Junying QIU, Mao TIAN, Jun LI. Downsampled image forensic network based on image recovery and spatial channel attention[J]. Journal of Computer Applications, 2025, 45(5): 1582-1588.
刘澳龄, 单武扬, 邱骏颖, 田茂, 李军. 基于图像恢复和空间通道注意力的下采样图像取证网络[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1582-1588.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050672
下采样&上采样 | 缩小 比例 | DSO | Columbia | NIST16 | CASIA | ||||
---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic & SRCNN[ | 2 | 80.52 | 0.921 3 | 73.23 | 0.934 2 | 73.42 | 0.912 0 | 72.72 | 0.931 8 |
Bicubic & RCAN[ | 84.16 | 0.926 5 | 75.25 | 0.945 5 | 75.29 | 0.921 6 | 74.22 | 0.941 6 | |
Bicubic & IRN[ | 90.06 | 0.975 6 | 80.32 | 0.953 5 | 80.02 | 0.944 6 | 81.54 | 0.964 8 | |
Bicubic & IRN+[ | 91.25 | 0.968 3 | 81.37 | 0.955 8 | 81.57 | 0.946 9 | 82.48 | 0.952 9 | |
本文恢复方法 | 90.12 | 0.967 3 | 82.52 | 0.961 5 | 80.09 | 0.952 1 | 83.27 | 0.948 3 | |
Bicubic & SRCNN[ | 4 | 68.35 | 0.857 6 | 64.68 | 0.914 5 | 65.25 | 0.821 9 | 63.63 | 0.749 8 |
Bicubic & RCAN[ | 70.28 | 0.875 3 | 66.29 | 0.925 5 | 69.29 | 0.841 6 | 66.26 | 0.821 6 | |
Bicubic & IRN[ | 78.36 | 0.916 8 | 74.46 | 0.926 5 | 74.46 | 0.868 8 | 74.35 | 0.941 7 | |
Bicubic & IRN+[ | 79.51 | 0.912 4 | 75.38 | 0.928 8 | 75.22 | 0.874 9 | 75.84 | 0.953 0 | |
本文恢复方法 | 80.23 | 0.912 7 | 76.23 | 0.934 6 | 75.37 | 0.880 4 | 76.26 | 0.958 2 |
Tab. 1 Quantitative analysis of different recovery methods on tampering datasets
下采样&上采样 | 缩小 比例 | DSO | Columbia | NIST16 | CASIA | ||||
---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic & SRCNN[ | 2 | 80.52 | 0.921 3 | 73.23 | 0.934 2 | 73.42 | 0.912 0 | 72.72 | 0.931 8 |
Bicubic & RCAN[ | 84.16 | 0.926 5 | 75.25 | 0.945 5 | 75.29 | 0.921 6 | 74.22 | 0.941 6 | |
Bicubic & IRN[ | 90.06 | 0.975 6 | 80.32 | 0.953 5 | 80.02 | 0.944 6 | 81.54 | 0.964 8 | |
Bicubic & IRN+[ | 91.25 | 0.968 3 | 81.37 | 0.955 8 | 81.57 | 0.946 9 | 82.48 | 0.952 9 | |
本文恢复方法 | 90.12 | 0.967 3 | 82.52 | 0.961 5 | 80.09 | 0.952 1 | 83.27 | 0.948 3 | |
Bicubic & SRCNN[ | 4 | 68.35 | 0.857 6 | 64.68 | 0.914 5 | 65.25 | 0.821 9 | 63.63 | 0.749 8 |
Bicubic & RCAN[ | 70.28 | 0.875 3 | 66.29 | 0.925 5 | 69.29 | 0.841 6 | 66.26 | 0.821 6 | |
Bicubic & IRN[ | 78.36 | 0.916 8 | 74.46 | 0.926 5 | 74.46 | 0.868 8 | 74.35 | 0.941 7 | |
Bicubic & IRN+[ | 79.51 | 0.912 4 | 75.38 | 0.928 8 | 75.22 | 0.874 9 | 75.84 | 0.953 0 | |
本文恢复方法 | 80.23 | 0.912 7 | 76.23 | 0.934 6 | 75.37 | 0.880 4 | 76.26 | 0.958 2 |
方法 | 缩小 比例 | DSO | Columbia | NIST16 | CASIA | COVERAGE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | F1 | IoU | AUC | F1 | IoU | AUC | F1 | IoU | AUC | F1 | IoU | AUC | F1 | IoU | ||
ForSim[ | 无 操作 | 0.78 | 0.45 | 0.35 | 0.73 | 0.60 | 0.42 | 0.63 | 0.16 | 0.12 | 0.54 | 0.15 | 0.10 | 0.60 | 0.18 | 0.14 |
PSCC-Net[ | 0.72 | 0.30 | 0.21 | 0.86 | 0.52 | 0.38 | 0.74 | 0.24 | 0.20 | 0.85 | 0.18 | 0.11 | 0.78 | 0.26 | 0.26 | |
DFCN[ | 0.74 | 0.30 | 0.18 | 0.75 | 0.60 | 0.50 | 0.66 | 0.21 | 0.11 | 0.75 | 0.35 | 0.32 | 0.70 | 0.24 | 0.22 | |
HirrNet | 0.83 | 0.42 | 0.30 | 0.84 | 0.71 | 0.60 | 0.76 | 0.31 | 0.25 | 0.86 | 0.46 | 0.40 | 0.78 | 0.34 | 0.28 | |
ForSim[ | 2 | 0.71 | 0.31 | 0.32 | 0.71 | 0.43 | 0.38 | 0.60 | 0.14 | 0.10 | 0.41 | 0.12 | 0.08 | 0.60 | 0.16 | 0.14 |
PSCC-Net[ | 0.68 | 0.26 | 0.19 | 0.74 | 0.41 | 0.34 | 0.71 | 0.21 | 0.18 | 0.59 | 0.15 | 0.10 | 0.73 | 0.24 | 0.21 | |
DFCN[ | 0.72 | 0.27 | 0.16 | 0.72 | 0.49 | 0.47 | 0.64 | 0.19 | 0.10 | 0.71 | 0.32 | 0.29 | 0.65 | 0.21 | 0.15 | |
HirrNet | 0.81 | 0.37 | 0.29 | 0.82 | 0.68 | 0.58 | 0.74 | 0.29 | 0.23 | 0.82 | 0.43 | 0.36 | 0.72 | 0.30 | 0.27 | |
ForSim[ | 4 | 0.62 | 0.24 | 0.25 | 0.64 | 0.36 | 0.27 | 0.54 | 0.10 | 0.07 | 0.35 | 0.06 | 0.06 | 0.56 | 0.12 | 0.10 |
PSCC-Net[ | 0.58 | 0.21 | 0.16 | 0.62 | 0.31 | 0.24 | 0.62 | 0.14 | 0.12 | 0.49 | 0.11 | 0.07 | 0.63 | 0.18 | 0.15 | |
DFCN[ | 0.64 | 0.22 | 0.13 | 0.61 | 0.34 | 0.38 | 0.59 | 0.15 | 0.08 | 0.65 | 0.24 | 0.15 | 0.61 | 0.17 | 0.12 | |
HirrNet | 0.80 | 0.36 | 0.26 | 0.78 | 0.56 | 0.54 | 0.70 | 0.27 | 0.21 | 0.80 | 0.41 | 0.34 | 0.72 | 0.29 | 0.26 |
Tab. 2 AUC, F1 and IoU comparison of tampering detection of different methods
方法 | 缩小 比例 | DSO | Columbia | NIST16 | CASIA | COVERAGE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | F1 | IoU | AUC | F1 | IoU | AUC | F1 | IoU | AUC | F1 | IoU | AUC | F1 | IoU | ||
ForSim[ | 无 操作 | 0.78 | 0.45 | 0.35 | 0.73 | 0.60 | 0.42 | 0.63 | 0.16 | 0.12 | 0.54 | 0.15 | 0.10 | 0.60 | 0.18 | 0.14 |
PSCC-Net[ | 0.72 | 0.30 | 0.21 | 0.86 | 0.52 | 0.38 | 0.74 | 0.24 | 0.20 | 0.85 | 0.18 | 0.11 | 0.78 | 0.26 | 0.26 | |
DFCN[ | 0.74 | 0.30 | 0.18 | 0.75 | 0.60 | 0.50 | 0.66 | 0.21 | 0.11 | 0.75 | 0.35 | 0.32 | 0.70 | 0.24 | 0.22 | |
HirrNet | 0.83 | 0.42 | 0.30 | 0.84 | 0.71 | 0.60 | 0.76 | 0.31 | 0.25 | 0.86 | 0.46 | 0.40 | 0.78 | 0.34 | 0.28 | |
ForSim[ | 2 | 0.71 | 0.31 | 0.32 | 0.71 | 0.43 | 0.38 | 0.60 | 0.14 | 0.10 | 0.41 | 0.12 | 0.08 | 0.60 | 0.16 | 0.14 |
PSCC-Net[ | 0.68 | 0.26 | 0.19 | 0.74 | 0.41 | 0.34 | 0.71 | 0.21 | 0.18 | 0.59 | 0.15 | 0.10 | 0.73 | 0.24 | 0.21 | |
DFCN[ | 0.72 | 0.27 | 0.16 | 0.72 | 0.49 | 0.47 | 0.64 | 0.19 | 0.10 | 0.71 | 0.32 | 0.29 | 0.65 | 0.21 | 0.15 | |
HirrNet | 0.81 | 0.37 | 0.29 | 0.82 | 0.68 | 0.58 | 0.74 | 0.29 | 0.23 | 0.82 | 0.43 | 0.36 | 0.72 | 0.30 | 0.27 | |
ForSim[ | 4 | 0.62 | 0.24 | 0.25 | 0.64 | 0.36 | 0.27 | 0.54 | 0.10 | 0.07 | 0.35 | 0.06 | 0.06 | 0.56 | 0.12 | 0.10 |
PSCC-Net[ | 0.58 | 0.21 | 0.16 | 0.62 | 0.31 | 0.24 | 0.62 | 0.14 | 0.12 | 0.49 | 0.11 | 0.07 | 0.63 | 0.18 | 0.15 | |
DFCN[ | 0.64 | 0.22 | 0.13 | 0.61 | 0.34 | 0.38 | 0.59 | 0.15 | 0.08 | 0.65 | 0.24 | 0.15 | 0.61 | 0.17 | 0.12 | |
HirrNet | 0.80 | 0.36 | 0.26 | 0.78 | 0.56 | 0.54 | 0.70 | 0.27 | 0.21 | 0.80 | 0.41 | 0.34 | 0.72 | 0.29 | 0.26 |
编号 | 检测网络 | 无操作 | 缩小比例为2 | 缩小比例为4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
AUC | F1 | IoU | AUC | F1 | IoU | AUC | F1 | IoU | ||
#1 | Base+R | 0.684 | 0.245 | 0.216 | 0.620 | 0.208 | 0.184 | 0.587 | 0.159 | 0.163 |
#2 | Base+R+CAM | 0.698 | 0.257 | 0.224 | 0.639 | 0.235 | 0.206 | 0.609 | 0.178 | 0.188 |
#3 | Base+R+SAM | 0.712 | 0.262 | 0.240 | 0.651 | 0.258 | 0.221 | 0.627 | 0.203 | 0.212 |
#4 | Base+R+SE | 0.754 | 0.403 | 0.347 | 0.736 | 0.384 | 0.321 | 0.659 | 0.275 | 0.237 |
#5 | Base+R+CBAM | 0.782 | 0.435 | 0.348 | 0.752 | 0.420 | 0.346 | 0.715 | 0.317 | 0.253 |
#6 | Base+R+SCSE | 0.826 | 0.477 | 0.390 | 0.803 | 0.447 | 0.371 | 0.774 | 0.403 | 0.342 |
Tab. 3 Quantitative ablation experiment results of attention mechanisms in spatial channel
编号 | 检测网络 | 无操作 | 缩小比例为2 | 缩小比例为4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
AUC | F1 | IoU | AUC | F1 | IoU | AUC | F1 | IoU | ||
#1 | Base+R | 0.684 | 0.245 | 0.216 | 0.620 | 0.208 | 0.184 | 0.587 | 0.159 | 0.163 |
#2 | Base+R+CAM | 0.698 | 0.257 | 0.224 | 0.639 | 0.235 | 0.206 | 0.609 | 0.178 | 0.188 |
#3 | Base+R+SAM | 0.712 | 0.262 | 0.240 | 0.651 | 0.258 | 0.221 | 0.627 | 0.203 | 0.212 |
#4 | Base+R+SE | 0.754 | 0.403 | 0.347 | 0.736 | 0.384 | 0.321 | 0.659 | 0.275 | 0.237 |
#5 | Base+R+CBAM | 0.782 | 0.435 | 0.348 | 0.752 | 0.420 | 0.346 | 0.715 | 0.317 | 0.253 |
#6 | Base+R+SCSE | 0.826 | 0.477 | 0.390 | 0.803 | 0.447 | 0.371 | 0.774 | 0.403 | 0.342 |
1 | HUH M, LIU A, OWENS A, et al. Fighting fake news: Image splice detection via learned self-consistency[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11215. Cham: Springer, 2018: 106-124. |
2 | ASNANI V, YIN X, HASSNER T, et al. Proactive image manipulation detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 15365-15374. |
3 | 付顺旺,陈茜,李智,等. 用于篡改图像检测和定位的双通道渐进式特征过滤网络[J]. 计算机应用, 2024, 44(4): 1303-1309. |
FU S W, CHEN Q, LI Z, et al. Dual-channel progressive feature filtering network for tampered image detection and localization[J]. Journal of Computer Applications, 2024, 44(4): 1303-1309. | |
4 | 陈俊韬,朱子奇. 基于多尺度特征提取与融合的图像复制-粘贴伪造检测[J]. 计算机应用, 2023, 43(9): 2919-2924. |
CHEN J T, ZHU Z Q. Image copy-paste forgery detection based on multi-scale feature extraction and fusion[J]. Journal of Computer Applications, 2023, 43(9): 2919-2924. | |
5 | ABECIDAN R, ITIER V, BOULANGER J, et al. Unsupervised JPEG domain adaptation for practical digital image forensics[C]// Proceedings of the 2021 IEEE International Workshop on Information Forensics and Security. Piscataway: IEEE, 2021: 1-6. |
6 | SHAN W, ZOU D, WANG P, et al. RIFD-Net: a robust image forgery detection network[J]. IEEE Access, 2024, 12: 20326-20340. |
7 | SHAN W, YI Y, QIU J, et al. Robust median filtering forensics using image deblocking and filtered residual fusion[J]. IEEE Access, 2019, 7: 17174-17183. |
8 | 王朋博,单武扬,李军,等. 抗高强度椒盐噪声的鲁棒拼接取证算法[J]. 计算机应用, 2024, 44(10): 3177-3184. |
WANG P B, SHAN W Y, LI J, et al. Robust splicing forensics algorithm against high-intensity salt-and-pepper noise[J]. Journal of Computer Applications, 2024, 44(10): 3177-318. | |
9 | MAYER O, STAMM M C. Forensic similarity for digital images[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1331-1346. |
10 | LIU X, LIU Y, CHEN J, et al. PSCC-Net: progressive spatio-channel correlation network for image manipulation detection and localization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(11): 7505-7517. |
11 | ZHUANG P, LI H, TAN S, et al. Image tampering localization using a dense fully convolutional network[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2986-2999. |
12 | LIANG J, LUGMAYR A, ZHANG K, et al. Hierarchical conditional flow: a unified framework for image super-resolution and image rescaling[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4056-4065. |
13 | BI X, WEI Y, XIAO B, et al. RRU-Net: the ringed residual U-Net for image splicing forgery detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 30-39. |
14 | ROY A G, NAVAB N, WACHINGER C. Recalibrating fully convolutional networks with spatial and channel “squeeze and excitation” blocks[J]. IEEE Transactions on Medical Imaging, 2019, 38(2): 540-549. |
15 | OEZTIRELI A C, GROSS M. Perceptually based downscaling of images[J]. ACM Transactions on Graphics, 2015, 34(4): No.77. |
16 | MITCHELL D P, NETRAVALI A N. Reconstruction filters in computer-graphics[J]. ACM SIGGRAPH Computer Graphics, 1988, 22(4): 221-228. |
17 | SUN W, CHEN Z. Learned image downscaling for upscaling using content adaptive resampler[J]. IEEE Transactions on Image Processing, 2020, 29: 4027-4040. |
18 | KIM H, CHOI M, LIM B, et al. Task-aware image downscaling[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11208. Cham: Springer, 2018: 419-434. |
19 | LI Y, LIU D, LI H, et al. Learning a convolutional neural network for image compact-resolution[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1092-1107. |
20 | WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794-7803. |
21 | ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239. |
22 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
23 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
24 | FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2019: 3141-3149. |
25 | DE CARVALHO T J, RIESS C, ANGELOPOULOU E, et al. Exposing digital image forgeries by illumination color classification[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(7): 1182-1194. |
26 | HSU Y F, CHANG S F. Detecting image splicing using geometry invariants and camera characteristics consistency[C]// Proceedings of the 2006 IEEE International Conference on Multimedia Expo. Piscataway: IEEE, 2006: 549-552. |
27 | NIST. Nimble challenge 2017 evaluation[EB/OL]. [2022-01-23].. |
28 | DONG J, WANG W, TAN T. CASIA image tampering detection evaluation database[C]// Proceedings of the 2013 IEEE China Summit and International Conference on Signal and Information Processing. Piscataway: IEEE, 2013: 422-426. |
29 | WEN B H, ZHU Y, SUBRAMANIAN R, et al. COVERAGE - a novel database for copy-move forgery detection[C]// Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 161-165. |
30 | DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307. |
31 | ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 294-310. |
32 | XIAO M, ZHENG S, LIU C, et al. Invertible image rescaling[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12346. Cham: Springer, 2020: 126-144. |
33 | XIAO M, ZHENG S, LIU C, et al. Invertible rescaling network and its extensions[J]. International Journal of Computer Vision, 2023, 131(1): 134-159. |
[1] | Wanli SHEN, Yujin ZHANG, Wan HU. U-shaped feature pyramid network for image inpainting forensics [J]. Journal of Computer Applications, 2023, 43(2): 545-551. |
[2] | Cong XU, Xingtian WANG, Yongpeng TAO. Reversible data hiding method based on high-order bit-plane redundancy [J]. Journal of Computer Applications, 2022, 42(1): 171-177. |
[3] | CAO Yanjue, AN Bowen, LI Qiming. Real-time simulation and application of depth-of-field based on post-processing [J]. Journal of Computer Applications, 2015, 35(5): 1439-1443. |
[4] | LIU Yi LIU Yongben. Image resampling tampering detection based on further resampling [J]. Journal of Computer Applications, 2014, 34(3): 815-819. |
[5] | DU Hong-ye YAO Wang-shu. Method of blind image forensics based on Lambert-Phong model [J]. Journal of Computer Applications, 2012, 32(11): 3171-3173. |
[6] | CHEN Zong-ming ZHOU Zhi-ping. Source camera identification using Noise variance and texture complexity analysis [J]. Journal of Computer Applications, 2012, 32(06): 1563-1566. |
[7] | CHEN Zong-ming ZHOU Zhi-ping. Source camera identification based on nonsubsampled Contourlet transform denoising filter design [J]. Journal of Computer Applications, 2012, 32(02): 507-513. |
[8] | OU Jiajia CAI Biye XIONG Bin LI Feng. Detection of image region-duplication forgery based on gray level co-occurrence matrix [J]. Journal of Computer Applications, 2011, 31(06): 1628-1630. |
[9] | Chang-hui ZHOU Yong-jian HU Li-ling TAN. Study on performance of typical source camera classification algorithms [J]. Journal of Computer Applications, 2011, 31(04): 1133-1137. |
[10] | . Image copy detection based on SVD in wavelet domain [J]. Journal of Computer Applications, 2010, 30(4): 917-920. |
[11] | . Source camera identification schemes with color image information [J]. Journal of Computer Applications, 2010, 30(10): 2694-2697. |
[12] | . Source camera identification technique using large components of imaging sensor pattern noise [J]. Journal of Computer Applications, 2010, 30(1): 31-35. |
[13] | Zhen ZHANG Jiquan Kang Xijian Ping Yuan Ren. Blind detection of image splicing based on image quality metrics and moment features [J]. Journal of Computer Applications, 2008, 28(12): 3108-3111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||