Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1582-1588.DOI: 10.11772/j.issn.1001-9081.2024050672

• Cyber security • Previous Articles    

Downsampled image forensic network based on image recovery and spatial channel attention

Aoling LIU1, Wuyang SHAN1(), Junying QIU2, Mao TIAN3, Jun LI1   

  1. 1.College of Computer Science and Cyber Security (Pilot Software College),Chengdu University of Technology,Chengdu Sichuan 610059,China
    2.College of Fashion and Design Arts,Sichuan Normal University,Chengdu Sichuan 610066,China
    3.School of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
  • Received:2024-05-27 Revised:2024-09-30 Accepted:2024-10-25 Online:2024-11-05 Published:2025-05-10
  • Contact: Wuyang SHAN
  • About author:LIU Aoling, born in 1999, M. S. candidate. Her research interests include image forensics, deep learning.
    SHAN Wuyang, born in 1988, Ph. D., lecturer. His research interests include multimedia forensics, computer vision, data hiding.
    QIU Junying, born in 1990, M. S., lecturer. Her research interests include intelligent processing, analysis and security of digital art media.
    TIAN Mao, born in 1988, Ph. D., lecturer. His research interests include stereo matching, point cloud and image fusion, deep learning.
    LI Jun, born in 1973, Ph. D., professor. His research interests include high-performance computing, computer vision, artificial intelligence.
  • Supported by:
    National Natural Science Foundation of China(42001417)

基于图像恢复和空间通道注意力的下采样图像取证网络

刘澳龄1, 单武扬1(), 邱骏颖2, 田茂3, 李军1   

  1. 1.成都理工大学 计算机与网络安全学院(示范性软件学院),成都 610059
    2.四川师范大学 服装与设计艺术学院,成都 610066
    3.重庆邮电大学 计算机科学与技术学院,重庆 400065
  • 通讯作者: 单武扬
  • 作者简介:刘澳龄(1999—),女,四川内江人,硕士研究生,CCF会员,主要研究方向:图像取证、深度学习
    单武扬(1988—),男,湖南岳阳人,讲师,博士,主要研究方向:多媒体取证、计算机视觉、数据隐藏
    邱骏颖(1990—),女,四川成都人,讲师,硕士,主要研究方向:数字艺术媒体智能处理、分析和安全
    田茂(1988—),男,四川德阳人,讲师,博士,CCF会员,主要研究方向:立体匹配、点云和影像融合、深度学习
    李军(1973—),男,湖北潜江人,教授,博士,主要研究方向:高性能计算、计算机视觉、人工智能。
  • 基金资助:
    国家自然科学基金资助项目(42001417)

Abstract:

Downsampling operation will make images lose high-frequency forensic traces and detail information, increasing the difficulty of image forensics. Existing deep learning-based image forensic networks cannot effectively detect the images tampered by downsampling operation, making the enhancement of robustness in downsampling image forensics methods becomes a bottleneck in image forensics. To solve these problems, a downsampling image forensic network named HirrNet (Hierarchical Ringed Residual U-Net) was proposed, which consists of an image recovery module and a tampering detection module. In the image recovery module, the idea of Hierarchical Conditional Flow (HCF) was used to reduce the loss of high-frequency information by recovering forensic traces and details in tampered images, so as to improve the performance of tampering detection. In the tampering detection module, an end-to-end image segmentation network RRU-Net (Ringed Residual U-Net) was employed for tampering detection. Besides, by combining the Spatial and Channel Squeeze & Excitation (SCSE) mechanism, the extraction of tampering-related features in the downsampled image was effectively enhanced. Experimental results show that HirrNet outperforms comparative networks in terms of Area Under the receiver operating characteristic Curve (AUC), F1-score and Intersection and Union (IoU) on DSO, Columbia, CASIA, and NIST16 datasets. Compared with the comparative methods, HirrNet improves the AUC by 25 and 30 percentage points on average for the tampered images scaled down to 1/2 and 1/4 of their original sizes on CASIA dataset. These findings indicate that HirrNet can effectively resolve the poor robustness of existing downsampled image forensic methods.

Key words: image forensics, image recovery, spatial channel attention, downsampling

摘要:

下采样操作会使图像丢失高频取证痕迹和细节信息,增加图像取证的难度,而现有的基于深度学习的图像取证网络不能有效检测经过下采样操作篡改的图像,导致提高下采样图像取证方法的鲁棒性成为图像取证的瓶颈。为解决这个问题,提出一个下采样图像取证网络HirrNet(Hierarchical RRU-Net)。HirrNet主要包括图像恢复模块和篡改检测模块:图像恢复模块使用分层条件流(HCF)的思想,通过恢复篡改图像取证痕迹和细节信息减少高频信息的丢失,从而提高篡改检测性能;篡改检测模块则使用端到端图像分割网络RRU-Net(Ringed Residual U-Net)进行篡改检测。此外,通过结合空间和通道压缩与激励(SCSE)机制,可有效增强下采样图像中与篡改相关的特征的提取。实验结果表明,HirrNet在DSO、Columbia、CASIA和NIST16数据集上的受试者特征工作曲线下面积(AUC)、F1分数和交并比(IoU)优于对比网络。其中,在CASIA数据集上,对于尺寸缩小至原图1/2和1/4的篡改图像,HirrNet的AUC指标相较于对比方法平均提升25和30个百分点。可见,HirrNet可以有效解决现有的下采样图像取证方法鲁棒性差的问题。

关键词: 图像取证, 图像恢复, 空间通道注意力, 下采样

CLC Number: