Journal of Computer Applications

    Next Articles

Interactive visualization method of multi-category urban spatiotemporal big data based on point aggregation

  

  • Received:2024-11-11 Revised:2025-01-09 Online:2025-02-14 Published:2025-02-14

基于点聚合的多类别城市时空大数据交互式可视化方法

黎世骄1,韩博洋1,孟垂实2,张晓龙3,李天瑞4,郑宇1   

  1. 1. 西南交通大学
    2. 北京京东智能城市大数据研究院
    3. 西南交通大学,北京京东智能城市大数据研究院,京东城市(北京)数字科技有限公司
    4. 西南交通大学计算机与人工智能学院
  • 通讯作者: 黎世骄
  • 基金资助:
    北京市科技新星计划

Abstract: To address the challenges of managing and efficiently localizing large-scale, multi-category urban spatiotemporal data, an interactive visu-alization method based on point aggregation was proposed. First, efficient aggregation algorithms based on geographic location and geo-graphic hierarchy were introduced to address the needs of government personnel for effective visualization management in different scenarios. Second, a conditional parsing algorithm was proposed based on efficient point aggregation to enable real-time parsing and conversion of spatiotemporal conditions and category visibility, improving data localization efficiency. The method used nearly 270,000 urban entities in Beijing to conduct geographic hierarchical parsing algorithms and aggregation interaction experiments. The experiments demonstrated that the average performance of our two aggregation methods exceeds improvements of 70% and 60% over the K-means in various scenarios, confirming the system's efficiency and stability in data processing and aggregation services. This aggregation application has been successfully implemented in the Yizhuang urban governance project, supporting large-scale urban data aggregation for millions of entities and highlighting the high feasibility of the system.

Key words: Point Aggregation, Geographical level analysis, Human-computer Interaction, Visualization Management System, Spatiotemporal Data

摘要: 摘 要: 针对大规模多类别城市时空数据可视化管理难、定位效率慢的问题,提出基于点聚合的多类别城市时空大数据交互式可视化方法。首先,分别提出基于地理位置与基于地理层级的高效聚合算法满足政务人员在不同场景下的高效可视化管理;其次,在高效点聚合功能基础上,提出条件解析算法实现对时空条件、类目显隐的实时解析转换,提高数据定位效率;最后,采用北京市近27万城市实体数据进行地理层级解析算法与聚合交互实验。实验中不同场景下,所提出的2个聚合方法的平均性能相对于K-means方法均分别提高超过70%和60%,充分说明了系统存储数据时数据处理与聚合服务的高效性与稳定性;同时该聚合应用服务目前已于北京市亦庄城市治理项目示范应用,支撑百万级城市数据聚合服务,体现该应用设计具有较高的可用性。

关键词: 点聚合, 地理层级解析, 人机交互, 可视化管理系统, 时空数据