Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3621-3631.DOI: 10.11772/j.issn.1001-9081.2024111583

• Cyber security • Previous Articles    

Active protection method for deep neural network model based on four-dimensional Chen chaotic system

Xintao DUAN1,2(), Mengru BAO1, Yinhang WU1, Chuan QIN3   

  1. 1.School of Computer and Information Engineering,Henan Normal University,Xinxiang Henan 453007,China
    2.Henan Key Laboratory of Educational Artificial Intelligence and Personalized Learning (Henan Normal University),Xinxiang Henan 453007,China
    3.School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2024-11-07 Revised:2025-02-16 Accepted:2025-02-19 Online:2025-02-21 Published:2025-11-10
  • Contact: Xintao DUAN
  • About author:BAO Mengru, born in 1999, M. S. candidate. Her research interests include deep learning, model protection.
    WU Yinhang, born in 1997, M. S. candidate. His research interests include deep learning, model protection.
    QIN Chuan, born in 1980, Ph. D., professor. His research interests include digital image processing, information hiding, deep learning.
  • Supported by:
    Key Scientific Research Project of Universities in Henan Province(23A520006);Science and Technology Research Project of Henan Province(222102210199)

基于四维Chen混沌系统的深度神经网络模型主动保护方法

段新涛1,2(), 保梦茹1, 武银行1, 秦川3   

  1. 1.河南师范大学 计算机与信息工程学院,河南 新乡 453007
    2.教育人工智能与个性化学习河南省重点实验室(河南师范大学),河南 新乡 453007
    3.上海理工大学 光电信息与计算机工程学院,上海 200093
  • 通讯作者: 段新涛
  • 作者简介:保梦茹(1999—),女,河南郑州人,硕士研究生,主要研究方向:深度学习、模型保护
    武银行(1997—),男,河南周口人,硕士研究生,主要研究方向:深度学习、模型保护
    秦川(1980—),男,安徽芜湖人,教授,博士,主要研究方向:数字图像处理、信息隐藏、深度学习。
  • 基金资助:
    河南省高等学校重点科研项目(23A520006);河南省科技攻关项目(222102210199)

Abstract:

Deep Neural Network (DNN)-based models have been widely applied due to their superior performance. However, training a powerful DNN model requires extensive datasets, expertise, computational resources, specialized hardware, and significant time investment. Unauthorized exploitation of such models could cause substantial losses to model owners. Aiming at the security and intellectual property issues of DNN models, an active protection method was proposed. The method employed a new comprehensive weight selection strategy to precisely identify critical weights within the model. Combining with the structural characteristics of the convolutional layer in DNN model, the four-dimensional Chen chaotic system was introduced for the first time on the basis of the three-dimensional chaotic system to scramble and encrypt a small number of weights in the convolutional layer. Meanwhile, to address the problem that authorized users cannot decrypt even with the key, an Elliptic Curve Cryptography (ECC)-based digital signature scheme was integrated for encryption models. After encryption, the weight positions and the initial values of chaotic sequence were combined to form an encryption key. Authorized users can use the key to correctly decrypt the DNN model, while unauthorized attackers cannot functionally use intercepted models even if acquired. Experimental results show that scrambling a minimal fraction of weight positions significantly degrades classification accuracy, and the decryption model can be restored without any loss. In addition, the method is resistant to fine-tuning and pruning attacks, and the obtained key has strong sensitivity and is resistant to brute force attacks. Furthermore, the experiments verify the method’s transferability, it is effective for image classification models, and can protect deep image steganography models and object detection models simultaneously.

Key words: AI model security, Deep Neural Network (DNN), weight encryption, four-dimensional Chen chaotic system, Elliptic Curve Cryptography (ECC) algorithm

摘要:

基于深度神经网络(DNN)的模型以其优越的性能得到了广泛的应用,但训练一个性能强大的DNN模型需要大量的数据集、专业知识、计算资源、硬件条件和时间等,如果对它进行非法盗用会对模型拥有者造成巨大的损失。针对DNN模型的安全和知识产权问题,提出一种DNN模型主动保护方法。该方法使用一种新的综合性权重选择策略精准定位模型中的重要权重,并结合DNN模型卷积层的结构特点,在三维混沌系统的基础上首次引入四维Chen混沌系统对卷积层的少量权重进行位置置乱加密。同时,为了解决授权用户即使拥有密钥也无法解密的问题,结合椭圆曲线加密算法(ECC)构建加密模型的数字签名方案。加密后,权重位置和混沌序列的初始值复合形成加密密钥,授权用户可以使用该密钥正确解密DNN模型,而未被授权的攻击者即使截获了DNN模型也无法正常使用。实验结果表明,对分类模型的少量权重位置进行置乱能显著降低分类准确率,并且解密模型可以实现无损恢复。此外,该方法能够抵抗微调和剪枝攻击,且得到的密钥具有较强的敏感性并能抵抗暴力攻击。同时,通过实验验证了该方法不仅对图像分类模型有效,还能保护深度图像隐写模型和目标检测模型,具有可迁移性。

关键词: AI模型安全, 深度神经网络, 权重加密, 四维Chen混沌系统, 椭圆曲线加密算法

CLC Number: