Virtual machine placement is one of the core problems of resource scheduling in cloud data center. It has an important impact on the performance, resource utilization and energy consumption of data center. In order to optimize the data center energy consumption, improve resource utilization and ensure Quality of Service (QoS), a fuzzy membership degree based virtual machine placement algorithm was proposed. Firstly, combined the overload probability of physical hosts with the fitness placement relationship between virtual machines and physical hosts, a new distance measurement method was proposed. Then, according to the fuzzy membership function, the fitness fuzzy membership matrix between virtual machines and physical hosts was calculated. Finally, with the mechanism of energy awareness, the local search was performed in the fuzzy membership matrix to obtain the optimal placement scheme of the migration virtual machines. Simulation results show that the proposed algorithm can reduce the energy consumption of cloud data center, improve resource utilization and ensure QoS.
Aiming at object classification problem in heavily crowded and complex visual surveillance scenes, a real-time object classification approach was proposed based on discriminable features and continuous tracking. Firstly rapid features matching including color, shape and position was utilized to build the initial target correspondence in the whole scene, in which motion direction and velocity of the moving target were used to predict the preferable searching area in the next frame to accelerate the target matching process. And then the appearance model was utilized to rematch the occluded object without establishing the correspondence. In order to enhance the classification precision, the final object classification results were determined by the maximum probability of continuous object feature extraction and classification according to the tracking results. Experimental results show that the proposed method gets better classification precision compared with the method which do not utilized the continuous tracking,and its correct rate averagely reaches 97%. The new scheme effectively improves the performance of object classification in the complex scenes.