[1] GOSCINSKI A, BROCK M. Toward dynamic and attribute based publication, discovery and selection for cloud computing[J]. Future Generation Computer Systems, 2010, 26(7):947-970. [2] MOSA A, PATON N W. Optimizing virtual machine placement for energy and SLA in clouds using utility functions[J]. Journal of Cloud Computing, 2016, 5(1):17. [3] FAN X B, WEBER W D, BARROSO L A. Power provisioning for a warehouse-sized computer[C]//Proceedings of the 34th Annual International Symposium on Computer Architecture. New York:ACM, 2007:13-23. [4] 房丙午,黄志球.云计算中能耗和性能感知的虚拟机优化部署算法[J].计算机工程与科学,2016,38(12):2419-2424. (FANG B W, HUANG Z Q. An energy-and-performance-aware virtual machine placement optimization algorithm in cloud computing[J]. Journal of Computer Engineering & Science, 2016, 38(12):2419-2424.) [5] 刘德欣,闫永明,郭军,等.云环境下基于多目标决策的待整合服务器选择方法研究[J].小型微型计算机系统,2016,37(4):699-704. (LIU D X, YAN Y M, GUO J, et al. Method of selecting consolidating server in cloud environment based on multi-objective decision[J]. Journal of Chinese Computer Systems, 2016, 37(4):699-704.) [6] MANN Z Á. Rigorous results on the effectiveness of some heuristics for the consolidation of virtual machines in a cloud data center[J]. Future Generation Computer Systems, 2015, 51:1-6. [7] BELOGLAZOV A, ABAWAJY J, BUYYA R. Energy-aware re-source allocation heuristics for efficient management of data centers for cloud computing[J]. Future Generation Computer Systems, 2012, 28(5):755-768. [8] BELOGLAZOV A, BUYYA R. Optimal online deterministic algo-rithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[J]. Concurrency and Computation:Practice and Experience, 2012, 24(13):1397-1420. [9] CAO J, WU Y H, LI M L. Energy efficient allocation of virtual machines in cloud computing environments based on demand forecast[J]. Advances in Grid and Pervasive Computing, 2012, 7296:137-151. [10] FARAHNAKIAN F, LILJEBERG P, PLOSILA J. LiRCUP:linear regression based CPU usage prediction algorithm for live migration of virtual machines in data centers[C]//Proceedings of the 39th EUROMICRO Conference on Software Engineering and Advanced Applications. Washington, DC:IEEE Computer Society, 2013:357-364. [11] YU L, CHEN L, CAI Z, et al. Stochastic load balancing for virtual resource management in datacenters[J]. IEEE Transactions on Cloud Computing, 2016, PP(99):1-1. [12] CHEN M, ZHANG H, SU Y Y, et al. Effective VM sizing in virtualized data centers[C]//Proceedings of the 2011 IFIP/IEEE International Symposium on Integrated Network Management. Piscataway, NJ:IEEE, 2011:594-601. [13] JIN H, PAN D, XU J, et al. Efficient VM placement with multiple deterministic and stochastic resources in data centers[C]//Proceedings of the 2012 IEEE Global Communications Conference. Piscataway, NJ:IEEE, 2012:2505-2510. [14] WANG M, MENG X, ZHANG L. Consolidating virtual machines with dynamic bandwidth demand in data centers[C]//INFOCOM 2011:Proceedings of the 30th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies. Piscataway, NJ:IEEE, 2011:71-75. [15] STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]//Proceedings of the 1999 Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 1999:246-252. [16] CALHEIROS R N, RANJAN R, BELOGLAZOV A, et al. CloudSim:a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J]. Software Practice & Experience, 2011, 41(1):23-50. |