Unsupervised relation extraction aims to extract the semantic relations between entities from unlabeled natural language text. Currently, unsupervised relation extraction models based on Variational Auto-Encoder (VAE) architecture provide supervised signals to train model through reconstruction loss, which offers a new idea to complete unsupervised relation extraction tasks. Focusing on the issue that this kind of models cannot understand contextual information effectively and relies on dataset inductive biases, a Prompt-based learning based Unsupervised Relation Extraction (PURE) model was proposed, including a relation extraction module and a link prediction module. In the relation extraction module, a context-aware Prompt template function was designed to fuse the contextual information, and the unsupervised relation extraction task was converted into a mask prediction task, so as to make full use of the knowledge obtained during pre-training phase to extract relations. In the link prediction module, supervised signals were provided for the relation extraction module by predicting the missing entities in the triples to assist model training. Extensive experiments on two public real-world relation extraction datasets were carried out. The results show that PURE model can use contextual information effectively and does not rely on dataset inductive biases, and has the evaluation index B-cubed F1 improved by 3.3 percentage points on NYT dataset compared with the state-of-the-art VAE architecture-based model UREVA (Variational Autoencoder-based Unsupervised Relation Extraction model).
Aiming at the problem that the heuristic algorithms have unstable path lengths and are easy to fall into local minimum in the process of robot path planning, an Adaptively Adjusted Harris Hawk Optimization (AAHHO) algorithm was proposed. Firstly, the convergence factor adjustment strategy was used to adjust the balance between the global search stage and the local search stage, and the natural constant was used as the base to improve the search efficiency and convergence accuracy. Then, in the global search phase, the elite cooperation guided search strategy was adopted, by three elite Harris hawks cooperatively guiding other individuals to update the positions, so that the search performance was enhanced, and the information exchange among the populations was enhanced through the three optimal positions. Finally, by simulating the intraspecific competition strategy, the ability of the Harris hawks to jump out of the local optimum was improved. The comparative experimental results of function testing and robot path planning show that the proposed algorithm is superior to comparison algorithms such as IHHO(Improve Harris Hawk Optimization) and CHHO(Chaotic Harris Hawk Optimization), in both function testing and path planning, and it has better effectiveness, feasibility and stability in robot path planning.
Focused on the issue that the quantum secret sharing is limited to the maximally entangled state, a scheme for quantum state sharing of an arbitrary unknown N-qubit state by using entangled state as quantum channel was proposed. The sender Alice used the Bell basis measurement and then the receiver Bob or Charlie used the single particle measurement. The participants chose the right joint unitary operation according to the results from Alice and the signal measurement, which could realize arbitrary N-qubit secret sharing. The eavesdropping analysis shows explicitly that the scheme is secure and it can resist the external eavesdropper and internal dishonest participant.