In order to explore the feasibility of a self-supervised feature extraction method in skeletal X-ray image anomaly detection, an anomaly detection method for skeletal X-ray images based on self-supervised feature extraction was proposed. The self-supervised learning framework and Vision Transformer (ViT) model were combined for feature extraction in skeletal anomaly detection, and anomaly detection classification was carried out by linear classifiers, which can effectively avoid the dependence of supervised models on large-scale labeled data in feature extraction stage. Experiments were performed on publicly available skeletal X-ray image datasets, the skeletal anomaly detection models based on pre-trained Convolutional Neural Network (CNN) and self-supervised feature extraction were evaluated with accuracy. Experimental results show that self-supervised feature extraction model has better effect than the general CNN models, its classification results in seven parts are similar to those of supervised CNN models, but the abnormal detection accuracy for elbow, finger and humerus achieved optimal values, and the average accuracies increases by 5.37 percentage points compared to ResNet50. The proposed method is easy to implement and can be used as a visual assistant tool for radiologist initial diagnosis.
Prompt paradigm is widely used to zero-shot Natural Language Processing (NLP) tasks. However, the existing zero-shot Relation Extraction (RE) model based on Prompt paradigm suffers from the difficulty of constructing answer space mappings and dependence on manual template selection, which leads to suboptimal performance. To address these issues, a zero-shot RE model via multi-template fusion in Prompt was proposed. Firstly, the zero-shot RE task was defined as the Masked Language Model (MLM) task, where the construction of answer space mapping was abandoned. Instead, the words output by the template were compared with the relation description text in the word embedding space to determine the relation class. Then, the part of speech of the relation description text was introduced as a feature, and the weight between this feature and each template was learned. Finally, this weight was utilized to fuse the results output by multiple templates, thereby reducing the performance loss caused by the manual selection of Prompt templates. Experimental results on FewRel (Few-shot Relation extraction dataset) and TACRED (Text Analysis Conference Relation Extraction Dataset) show that, the proposed model significantly outperforms the current state-of-the-art model, RelationPrompt, in terms of F1 score under different data resource settings, with an increase of 1.48 to 19.84 percentage points and 15.27 to 15.75 percentage points, respectively. These results convincingly demonstrate the effectiveness of the proposed model for zero-shot RE tasks.
Concerning the problems of centralized functions of notary nodes and low cross?chain transaction efficiency in notary mechanism, a cross?chain interaction safety model based on notary groups was proposed. Firstly, notary nodes were divided into three kinds of roles, i.e. transaction verifiers, connectors and supervisors, and multiple transactions with consensus were packaged to a big deal by transaction verification group, and the threshold signature technique was used to sign it. Secondly, the confirmed transactions were placed in a cross?chain wait?to?be?transferred pool, some transactions were selected randomly by the connectors, and the technologies such as secure multiparty computation and fully homomorphic encryption were used to judge the authenticity of these transactions. Finally, if the hash values of all eligible transactions were true and reliable as well as verified by the transaction verification group, a batch task of multiple cross?chain transactions was able to be continued by the connector and be interacted with the blockchain in information. Security analysis shows that the proposed cross?chain mechanism is helpful to protect the confidentiality of information and the integrity of data, realizes the collaborative computing of data without leaving the database, and guarantees the stability of the cross?chain system of blockchain. Compared with the traditional cross?chain interaction security model, the complexity of the number of signatures and the number of notary groups that need to be assigned decreases from O ( n ) to O ( 1 ) .
In view of the fact that the existing algorithms cannot effectively be applied to multi-factor trajectory outlier detection, this paper proposed a new method named TOD-KPCA (Trajectory Outlier Detection method based on Kernel Principal Component Analysis). Firstly, in order to enhance the effect of trajectory feature extraction, the method used KPCA to do the space transformation for trajectories and converted nonlinear space to a high dimension linear space. Furthermore, in order to improve the accuracy of outlier detection, the method used one-class Support Vector Machine (SVM) to do unsupervised learning and prediction with trajectory feature data. Finally, the method detected those trajectories with abnormal behavior. The proposed algorithm was tested on the Atlantic hurricane data. The experimental results show that the proposed algorithm can effectively extract trajectory features, and compared with the same algorithm, the proposed algorithm has better detection results in terms of multi-factor trajectory outlier detection.