To address the issues of blurred contours and lost details of portrait image with motion blur after restoration, a moving portrait deblurring method based on multi-level jump residual group Generation Adversarial Network (GAN) was proposed. Firstly, the residual block was improved to construct the multi-level jump residual group module, and the structure of PatchGAN was also improved to make GAN better combine with the image features of each layer. Secondly, the multi-loss fusion method was adopted to optimize the network to enhance the real texture of the reconstructed image. Finally, the end-to-end mode was used to perform blind deblurring on the motion blurred portrait image and output clear portrait image. Experimental results on CelebA dataset show that the Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM) of the proposed method are at least 0.46 dB and 0.05 higher than those of the Convolutional Neural Network (CNN)-based methods such as DeblurGAN (Deblur GAN), Scale-Recurrent Network (SRN) and MSRAN (Multi-Scale Recurrent Attention Network). At the same time, the proposed method has fewer model parameters, faster restoration, and more texture details in the restored portrait images.