Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (10): 3244-3250.DOI: 10.11772/j.issn.1001-9081.2022091457
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Jiaqi JI, Zhenkun LU(), Fupeng XIONG, Tian ZHANG, Hao YANG
Received:
2022-10-08
Revised:
2023-01-03
Accepted:
2023-02-01
Online:
2023-04-04
Published:
2023-10-10
Contact:
Zhenkun LU
About author:
JI Jiaqi, born in 1997, M. S. candidate. His research interests include deep learning, image processing.Supported by:
通讯作者:
卢振坤
作者简介:
纪佳奇(1997—),男,江苏徐州人,硕士研究生,主要研究方向:深度学习、图像处理基金资助:
CLC Number:
Jiaqi JI, Zhenkun LU, Fupeng XIONG, Tian ZHANG, Hao YANG. Moving portrait debluring network based on multi-level jump residual group[J]. Journal of Computer Applications, 2023, 43(10): 3244-3250.
纪佳奇, 卢振坤, 熊福棚, 张甜, 杨豪. 基于多级跳跃残差组的运动人像去模糊网络[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3244-3250.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091457
层 | 大小 | 卷积核大小 | Stride | 激活函数 |
---|---|---|---|---|
Conv1 | 256×256×64 | 3×3 | 1 | LeakyReLU |
Conv2 | 128×128×64 | 3×3 | 2 | LeakyReLU |
Conv3 | 128×128×128 | 3×3 | 1 | LeakyReLU |
Conv4 | 64×64×128 | 3×3 | 2 | LeakyReLU |
Conv5 | 64×64×256 | 3×3 | 1 | LeakyReLU |
Conv6 | 32×32×256 | 3×3 | 2 | LeakyReLU |
Conv7 | 32×32×512 | 3×3 | 1 | LeakyReLU |
Conv8 | 16×16×512 | 3×3 | 2 | LeakyReLU |
Dense1 | 16×16×1 024 | LeakyReLU | ||
Dense2 | 16×16×1 | Sigmoid |
Tab. 1 Model parameters of discriminative network
层 | 大小 | 卷积核大小 | Stride | 激活函数 |
---|---|---|---|---|
Conv1 | 256×256×64 | 3×3 | 1 | LeakyReLU |
Conv2 | 128×128×64 | 3×3 | 2 | LeakyReLU |
Conv3 | 128×128×128 | 3×3 | 1 | LeakyReLU |
Conv4 | 64×64×128 | 3×3 | 2 | LeakyReLU |
Conv5 | 64×64×256 | 3×3 | 1 | LeakyReLU |
Conv6 | 32×32×256 | 3×3 | 2 | LeakyReLU |
Conv7 | 32×32×512 | 3×3 | 1 | LeakyReLU |
Conv8 | 16×16×512 | 3×3 | 2 | LeakyReLU |
Dense1 | 16×16×1 024 | LeakyReLU | ||
Dense2 | 16×16×1 | Sigmoid |
卷积层 | PSNR/dB | SSIM | 卷积层 | PSNR/dB | SSIM |
---|---|---|---|---|---|
28.02 | 0.92 | 29.21 | 0.94 | ||
28.24 | 0.91 | 27.79 | 0.90 |
Tab. 2 Comparison of deblurring effects of different convolutional layers in VGG19
卷积层 | PSNR/dB | SSIM | 卷积层 | PSNR/dB | SSIM |
---|---|---|---|---|---|
28.02 | 0.92 | 29.21 | 0.94 | ||
28.24 | 0.91 | 27.79 | 0.90 |
损失函数 | PSNR/dB | SSIM |
---|---|---|
Ladv | 28.16 | 0.91 |
LP | 28.03 | 0.91 |
Ladv+LP | 29.21 | 0.94 |
Tab. 3 Ablation experimental results of different loss functions
损失函数 | PSNR/dB | SSIM |
---|---|---|
Ladv | 28.16 | 0.91 |
LP | 28.03 | 0.91 |
Ladv+LP | 29.21 | 0.94 |
残差块数 | PSNR/dB | SSIM |
---|---|---|
1 | 26.85 | 0.75 |
2 | 27.23 | 0.82 |
3 | 29.21 | 0.94 |
Tab. 4 Performance analysis of different numbers of residual blocks
残差块数 | PSNR/dB | SSIM |
---|---|---|
1 | 26.85 | 0.75 |
2 | 27.23 | 0.82 |
3 | 29.21 | 0.94 |
方法 | PSNR/dB | SSIM | 生成网络参数量 |
---|---|---|---|
Multiple-scale CNN | 29.12 | 0.92 | ― |
DeblurGAN | 27.90 | 0.87 | 11 399 171 |
SRN | 30.13 | 0.93 | ― |
MSRAN | 31.62 | 0.94 | ― |
DMPHN | 31.61 | 0.93 | ― |
本文方法 | 32.19 | 0.96 | 2 926 659 |
Tab. 5 Quantitative comparison results of the performance of different algorithms in removing Gaussian blur in portraits
方法 | PSNR/dB | SSIM | 生成网络参数量 |
---|---|---|---|
Multiple-scale CNN | 29.12 | 0.92 | ― |
DeblurGAN | 27.90 | 0.87 | 11 399 171 |
SRN | 30.13 | 0.93 | ― |
MSRAN | 31.62 | 0.94 | ― |
DMPHN | 31.61 | 0.93 | ― |
本文方法 | 32.19 | 0.96 | 2 926 659 |
方法 | PSNR/dB | SSIM | 复原时间/s |
---|---|---|---|
Multiple-scale CNN | 26.36 | 0.84 | 1.562 |
DeblurGAN | 27.26 | 0.85 | 0.097 |
SRN | 26.79 | 0.84 | 0.831 |
MSRAN | 28.75 | 0.89 | 0.614 |
DMPHN | 27.86 | 0.87 | 0.034 |
本文方法 | 29.21 | 0.94 | 0.089 |
Tab. 6 Quantitative comparison results of the performance of different algorithms in removing portrait motion blur
方法 | PSNR/dB | SSIM | 复原时间/s |
---|---|---|---|
Multiple-scale CNN | 26.36 | 0.84 | 1.562 |
DeblurGAN | 27.26 | 0.85 | 0.097 |
SRN | 26.79 | 0.84 | 0.831 |
MSRAN | 28.75 | 0.89 | 0.614 |
DMPHN | 27.86 | 0.87 | 0.034 |
本文方法 | 29.21 | 0.94 | 0.089 |
方法 | PSNR/dB | SSIM | 方法 | PSNR/dB | SSIM |
---|---|---|---|---|---|
Multi-scale CNN | 28.28 | 0.89 | MSRAN | 29.45 | 0.92 |
DeblurGAN | 28.25 | 0.87 | DMPHN | 30.51 | 0.92 |
SRN | 29.33 | 0.90 | 本文方法 | 30.48 | 0.94 |
Tab. 7 Experimental results comparison of deblurring effects by different methos on GoPro dataset
方法 | PSNR/dB | SSIM | 方法 | PSNR/dB | SSIM |
---|---|---|---|---|---|
Multi-scale CNN | 28.28 | 0.89 | MSRAN | 29.45 | 0.92 |
DeblurGAN | 28.25 | 0.87 | DMPHN | 30.51 | 0.92 |
SRN | 29.33 | 0.90 | 本文方法 | 30.48 | 0.94 |
1 | WHITE R L. Image restoration using the damped Richardson-Lucy method[C]// Proceedings of the SPIE 2198, Instrumentation in Astronomy Ⅷ. Bellingham, WA: SPIE, 1994: 1342-1348. 10.1117/12.176819 |
2 | FERGUS R, SINGH B, HERTZMANN A, et al. Removing camera shake from a single photograph[M]// ACM SIGGRAPH 2006 Papers. New York: ACM, 2006: 787-794. 10.1145/1179352.1141956 |
3 | PAN J, SUN D, PFISTER H, et al. Blind image deblurring using dark channel prior[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1628-1636. 10.1109/cvpr.2016.180 |
4 | LI L, PAN J, LAI W S, et al. Learning a discriminative prior for blind image deblurring[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6616-6625. 10.1109/cvpr.2018.00692 |
5 | LEVIN A. Blind motion deblurring using image statistics[C]// Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2006: 841-848. 10.7551/mitpress/7503.003.0110 |
6 | YUAN X, ZHU J, LI X. Blur kernel estimation by structure sparse prior[J]. Applied Sciences, 2020, 10(2): No.657. 10.3390/app10020657 |
7 | LIU S, FENG Y, ZHANG S, et al. L0 sparse regularization-based image blind deblurring approach for solid waste image restoration[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9837-9845. 10.1109/tie.2019.2892681 |
8 | XU L, REN J S J, LIU C, et al. Deep convolutional neural network for image deconvolution[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems — Volume 1. Cambridge: MIT Press, 2014: 1790-1798. |
9 | SUN J, CAO W, XU Z, et al. Learning a convolutional neural network for non-uniform motion blur removal[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 769-777. 10.1109/cvpr.2015.7298677 |
10 | GONG D, YANG J, LIU L, et al. From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3806-3815. 10.1109/cvpr.2017.405 |
11 | NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 257-265. 10.1109/cvpr.2017.35 |
12 | KUPYN O, BUDZAN V, MYKHAILYCH M, et al. DeblurGAN: blind motion deblurring using conditional adversarial networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8183-8192. 10.1109/cvpr.2018.00854 |
13 | TAO X, GAO H, SHEN X, et al. Scale-recurrent network for deep image deblurring[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8174-8182. 10.1109/cvpr.2018.00853 |
14 | WU Y, HONG C, ZHANG X, et al. Stack-based scale-recurrent network for face image deblurring[J]. Neural Processing Letters, 2021, 53(6): 4419-4436. 10.1007/s11063-021-10604-9 |
15 | 陈贵强,何军,罗顺茺. 基于改进CycleGAN的视频监控人脸超分辨率恢复算法[J]. 计算机应用研究, 2021, 38(10):3172-3176. 10.19734/j.issn.1001-3695.2020.11.0434 |
CHEN G Q, HE J, LUO S C. Improved video surveillance face super-resolution recovery algorithm based on CycleGAN[J]. Application Research of Computers, 2021, 38(10):3172-3176. 10.19734/j.issn.1001-3695.2020.11.0434 | |
16 | 欧阳宁,邓超阳,林乐平. 基于自适应残差的运动图像去模糊[J]. 计算机工程与设计, 2021, 42(6):1684-1690. 10.16208/j.issn1000-7024.2021.06.024 |
OUYANG N, DENG C Y, LIN L P. Motion image deblurring based on adaptive residuals[J]. Computer Engineering and Design, 2021, 42(6): 1684-1690. 10.16208/j.issn1000-7024.2021.06.024 | |
17 | 魏海云,郑茜颖,俞金玲. 基于多尺度网络的运动模糊图像复原算法[J]. 计算机应用, 2022, 42(9): 2838-2844. 10.11772/j.issn.1001-9081.2021081433 |
WEI H Y, ZHENG Q Y, YU J L. Motion blurred image restoration algorithm based on multi-scale network[J]. Journal of Computer Applications, 2022, 42(9): 2838-2844. 10.11772/j.issn.1001-9081.2021081433 | |
18 | 刘万军,张正寰,曲海成. 融合DenseNet的多尺度图像去模糊模型[J]. 计算机工程与应用, 2021, 57(24): 219-226. |
LIU W J, ZHANG Z H, QU H C. Multi-scale image deblurring model with DenseNet[J]. Computer Engineering and Applications, 2021, 57(24):219-226. | |
19 | 王向军,欧阳文森. 多尺度循环注意力网络运动模糊图像复原方法[J]. 红外与激光工程, 2022, 51(6): No.20210605. |
WANG X J, OUYANG W S. Multi-scale recurrent attention network for image motion deblurring[J]. Infrared and Laser Engineering, 2022, 51(6): No.20210605. | |
20 | ZHANG H, DAI Y, LI H, et al. Deep stacked hierarchical multi-patch network for image deblurring[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5971-5979. 10.1109/cvpr.2019.00613 |
21 | 李福海,蒋慕蓉,杨磊,等. 基于生成对抗网络的梯度引导太阳斑点图像去模糊方法[J]. 计算机应用, 2021, 41(11):3345-3352. 10.11772/j.issn.1001-9081.2020121898 |
LI F H, JIANG M R, YANG L, et al. Solar speckle image deblurring method with gradient guidance based on generative adversarial network[J]. Journal of Computer Applications, 2021, 41(11): 3345-3352. 10.11772/j.issn.1001-9081.2020121898 | |
22 | 虞志军,王国栋,张镡月. 基于增强多尺度特征网络的图像去模糊[J]. 激光与光电子学进展, 2022, 59(22): No.2215007. 10.3788/LOP202259.2215007 |
YU Z J, WANG G D, ZHANG X Y. Image deblurring based on enhanced multi-scale feature network[J]. Laser and Optoelectronics Progress, 2022, 59(22): No.2215007. 10.3788/LOP202259.2215007 | |
23 | 王晨卿,荆涛,刘云鹏,等. 基于多尺度条件生成对抗网络的图像去模糊[J]. 计算机工程与设计, 2022, 43(4):1074-1082. |
WANG C Q, JIN T, LIU Y P, et al. Image deblurring based on multi-scale conditional generative adversarial network[J]. Computer Engineering and Design, 2022, 43(4):1074-1082. | |
24 | 魏丙财,张立晔,孟晓亮,等. 基于深度残差生成对抗网络的运动图像去模糊[J]. 液晶与显示, 2021, 36(12): 1693-1701. 10.37188/cjlcd.2021-0120 |
WEI B C, ZHANG L Y, MENG X L, et al. Motion image deblurring based on depth residual generative adversarial network[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(12): 1693-1701. 10.37188/cjlcd.2021-0120 | |
25 | LI C, WAND M. Precomputed real-time texture synthesis with Markovian generative adversarial networks[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9907. Cham: Springer, 2016: 702-716. |
26 | SCHULER C J, HIRSCH M, HARMELING S, et al. Learning to deblur[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(7): 1439-1451. 10.1109/tpami.2015.2481418 |
27 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2014: 2672-2680. |
28 | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. 10.1109/cvpr.2017.19 |
29 | WANG X, YU K, WU S, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11133. Cham: Springer, 2019: 63-79. |
30 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
31 | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]// Proceedings of the 2016 European Conference on Computer Vision. Berlin: Springer, 2016: 694-711. 10.1007/978-3-319-46475-6_43 |
32 | ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5967-5976. 10.1109/cvpr.2017.632 |
33 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. 10.1109/cvpr.2009.5206848 |
34 | LIU Z, LUO P, WANG X, et al. Large-scale CelebFaces attributes (CelebA) dataset[DS/OL]. [2022-06-14].. |
35 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2022-06-14].. |
[1] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[2] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
[3] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. |
[4] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. |
[5] | Anyang LIU, Huaici ZHAO, Wenlong CAI, Zechao XU, Ruideng XIE. Adaptive image deblurring generative adversarial network algorithm based on active discrimination mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2288-2294. |
[6] | Shaoquan CHEN, Jianping CAI, Lan SUN. Differential privacy generative adversarial network algorithm with dynamic gradient threshold clipping [J]. Journal of Computer Applications, 2023, 43(7): 2065-2072. |
[7] | Xin JIN, Yangchuan LIU, Yechen ZHU, Zijian ZHANG, Xin GAO. Sinogram inpainting for sparse-view cone-beam computed tomography image reconstruction based on residual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2023, 43(6): 1950-1957. |
[8] | Jinwen GUO, Xinghua MA, Gongning LUO, Wei WANG, Yang CAO, Kuanquan WANG. Guidewire artifact removal method of structure-enhanced IVOCT based on Transformer [J]. Journal of Computer Applications, 2023, 43(5): 1596-1605. |
[9] | Jiagao WU, Shiwen ZHANG, Yudong JIANG, Linfeng LIU. Social-interaction GAN for pedestrian trajectory prediction based on state-refinement long short-term memory and attention mechanism [J]. Journal of Computer Applications, 2023, 43(5): 1565-1570. |
[10] | Xiaoyu FAN, Suzhen LIN, Yanbo WANG, Feng LIU, Dawei LI. Reconstruction algorithm for highly undersampled magnetic resonance images based on residual graph convolutional neural network [J]. Journal of Computer Applications, 2023, 43(4): 1261-1268. |
[11] | Hao WANG, Zicheng WANG, Chao ZHANG, Yunsheng MA. Generative adversarial network based data uncertainty quantification method [J]. Journal of Computer Applications, 2023, 43(4): 1094-1101. |
[12] | Chunyong YIN, Liwen ZHOU. Unsupervised time series anomaly detection model based on re-encoding [J]. Journal of Computer Applications, 2023, 43(3): 804-811. |
[13] | Lingling TAO, Bo LIU, Wenbo LI, Xiping HE. Controllable face editing algorithm with closed-form solution [J]. Journal of Computer Applications, 2023, 43(2): 601-607. |
[14] | Gang CHEN, Yongwei LIAO, Zhenguo YANG, Wenying LIU. Image inpainting algorithm of multi-scale generative adversarial network based on multi-feature fusion [J]. Journal of Computer Applications, 2023, 43(2): 536-544. |
[15] | Li’an ZHU, Hong ZHANG. Nonhomogeneous image dehazing based on dual-branch conditional generative adversarial network [J]. Journal of Computer Applications, 2023, 43(2): 567-574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||