Data-free model extraction attacks are a class of machine learning security problems based on the fact that the attacker has no knowledge of the training data information required to carry out the attack. Aiming at the research gap of data-free model extraction attacks in the field of Graphical Neural Network (GNN), a GNN model extraction attack method was proposed. The graph node feature information and edge information were optimized with the graph neural network interpretability method GNNExplainer and the graph data enhancement method GAUG-M, respectively, so as to generate the required graph data and achieve the final GNN model extraction. Firstly, the GNNExplainer method was used to obtain the important graph node feature information from the interpretable analysis of the response results of the target model. Secondly, the overall optimization of the graph node feature information was achieved by up weighting the important graph node features and downweighting the non-important graph node features. Then, the graph autoencoder was used as the edge information prediction module, which obtained the connection probability information between nodes according to the optimized graph node features. Finally, the edge information was optimized by adding or deleting the corresponding edges according to the probability. Three GNN model architectures trained on five graph datasets were experimented as the target models for extraction attacks, and the obtained alternative models achieve 73% to 87% accuracy in node classification task and 76% to 89% fidelity with the target model performance, which verifies the effectiveness of the proposed method.