Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2483-2492.DOI: 10.11772/j.issn.1001-9081.2023081110
• Cyber security • Previous Articles Next Articles
Ying YANG, Xiaoyan HAO(), Dan YU, Yao MA, Yongle CHEN
Received:
2023-08-20
Revised:
2023-11-01
Accepted:
2023-11-03
Online:
2023-12-18
Published:
2024-08-10
Contact:
Xiaoyan HAO
About author:
bio graphy:YANG Ying, born in 1999, M. S. candidate. Her research interests include artificial intelligence security.Supported by:
通讯作者:
郝晓燕
作者简介:
杨莹(1999—),女,山西太原人,硕士研究生,CCF会员,主要研究方向:人工智能安全基金资助:
CLC Number:
Ying YANG, Xiaoyan HAO, Dan YU, Yao MA, Yongle CHEN. Graph data generation approach for graph neural network model extraction attacks[J]. Journal of Computer Applications, 2024, 44(8): 2483-2492.
杨莹, 郝晓燕, 于丹, 马垚, 陈永乐. 面向图神经网络模型提取攻击的图数据生成方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2483-2492.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081110
变量符号 | 含义 |
---|---|
图的基本表示 | |
图中的某个节点表示 | |
节点 | |
节点 | |
节点集合 | |
边集合 | |
节点特征向量 | |
节点标签集合 | |
优化后的图数据 | |
优化后的节点数据 | |
优化后的边数据 | |
优化后的节点特征向量 | |
Mg | 目标模型 |
Ms | 替代模型 |
R | 目标模型的响应结果 |
替代模型的响应结果 |
Tab. 1 Related symbols and explanations
变量符号 | 含义 |
---|---|
图的基本表示 | |
图中的某个节点表示 | |
节点 | |
节点 | |
节点集合 | |
边集合 | |
节点特征向量 | |
节点标签集合 | |
优化后的图数据 | |
优化后的节点数据 | |
优化后的边数据 | |
优化后的节点特征向量 | |
Mg | 目标模型 |
Ms | 替代模型 |
R | 目标模型的响应结果 |
替代模型的响应结果 |
数据集 | 节点数 | 边数 | 特征向量维度 | 标签数 |
---|---|---|---|---|
DBLP | 17 716 | 105 734 | 1 639 | 4 |
PubMed | 19 717 | 88 648 | 500 | 3 |
Citeseer | 4 230 | 5 358 | 602 | 6 |
ACM | 3 025 | 26 256 | 1 870 | 3 |
Coauthor | 34 493 | 495 924 | 8 415 | 5 |
Tab. 2 Node and edge information for five graph datasets
数据集 | 节点数 | 边数 | 特征向量维度 | 标签数 |
---|---|---|---|---|
DBLP | 17 716 | 105 734 | 1 639 | 4 |
PubMed | 19 717 | 88 648 | 500 | 3 |
Citeseer | 4 230 | 5 358 | 602 | 6 |
ACM | 3 025 | 26 256 | 1 870 | 3 |
Coauthor | 34 493 | 495 924 | 8 415 | 5 |
数据集 | Ms | |||||
---|---|---|---|---|---|---|
GraphSAGE | GAT | GIN | ||||
Acc | Fid | Acc | Fid | Acc | Fid | |
DBLP | 0.799±0.003 | 0.832±0.005 | 0.735±0.003 | 0.768±0.011 | 0.735±0.008 | 0.779±0.013 |
PubMed | 0.830±0.012 | 0.867±0.007 | 0.812±0.007 | 0.846±0.004 | 0.772±0.002 | 0.824±0.004 |
Citeseer | 0.812±0.002 | 0.853±0.005 | 0.809±0.004 | 0.847±0.003 | 0.758±0.015 | 0.797±0.010 |
ACM | 0.837±0.005 | 0.870±0.008 | 0.836±0.002 | 0.850±0.004 | 0.823±0.013 | 0.854±0.007 |
Coauthor | 0.866±0.001 | 0.889±0.005 | 0.856±0.005 | 0.882±0.003 | 0.846±0.004 | 0.877±0.010 |
Tab. 3 Attack performance with GraphSAGE as target model architecture
数据集 | Ms | |||||
---|---|---|---|---|---|---|
GraphSAGE | GAT | GIN | ||||
Acc | Fid | Acc | Fid | Acc | Fid | |
DBLP | 0.799±0.003 | 0.832±0.005 | 0.735±0.003 | 0.768±0.011 | 0.735±0.008 | 0.779±0.013 |
PubMed | 0.830±0.012 | 0.867±0.007 | 0.812±0.007 | 0.846±0.004 | 0.772±0.002 | 0.824±0.004 |
Citeseer | 0.812±0.002 | 0.853±0.005 | 0.809±0.004 | 0.847±0.003 | 0.758±0.015 | 0.797±0.010 |
ACM | 0.837±0.005 | 0.870±0.008 | 0.836±0.002 | 0.850±0.004 | 0.823±0.013 | 0.854±0.007 |
Coauthor | 0.866±0.001 | 0.889±0.005 | 0.856±0.005 | 0.882±0.003 | 0.846±0.004 | 0.877±0.010 |
数据集 | Ms | |||||
---|---|---|---|---|---|---|
GraphSAGE | GAT | GIN | ||||
Acc | Fid | Acc | Fid | Acc | Fid | |
DBLP | 0.758±0.002 | 0.811±0.006 | 0.812±0.001 | 0.846±0.004 | 0.749±0.004 | 0.788±0.013 |
PubMed | 0.781±0.005 | 0.832±0.004 | 0.832±0.002 | 0.874±0.001 | 0.768±0.002 | 0.820±0.002 |
Citeseer | 0.763±0.003 | 0.809±0.004 | 0.828±0.004 | 0.862±0.003 | 0.756±0.020 | 0.805±0.011 |
ACM | 0.823±0.004 | 0.857±0.002 | 0.845±0.002 | 0.879±0.006 | 0.813±0.001 | 0.847±0.003 |
Coauthor | 0.841±0.005 | 0.879±0.003 | 0.870±0.005 | 0.891±0.012 | 0.836±0.005 | 0.872±0.013 |
Tab. 4 Attack performance with GAT as target model architecture
数据集 | Ms | |||||
---|---|---|---|---|---|---|
GraphSAGE | GAT | GIN | ||||
Acc | Fid | Acc | Fid | Acc | Fid | |
DBLP | 0.758±0.002 | 0.811±0.006 | 0.812±0.001 | 0.846±0.004 | 0.749±0.004 | 0.788±0.013 |
PubMed | 0.781±0.005 | 0.832±0.004 | 0.832±0.002 | 0.874±0.001 | 0.768±0.002 | 0.820±0.002 |
Citeseer | 0.763±0.003 | 0.809±0.004 | 0.828±0.004 | 0.862±0.003 | 0.756±0.020 | 0.805±0.011 |
ACM | 0.823±0.004 | 0.857±0.002 | 0.845±0.002 | 0.879±0.006 | 0.813±0.001 | 0.847±0.003 |
Coauthor | 0.841±0.005 | 0.879±0.003 | 0.870±0.005 | 0.891±0.012 | 0.836±0.005 | 0.872±0.013 |
数据集 | Ms | |||||
---|---|---|---|---|---|---|
GraphSAGE | GAT | GIN | ||||
Acc | Fid | Acc | Fid | Acc | Fid | |
DBLP | 0.742±0.002 | 0.773±0.003 | 0.733±0.002 | 0.769±0.010 | 0.806±0.005 | 0.822±0.003 |
PubMed | 0.774±0.006 | 0.791±0.004 | 0.758±0.003 | 0.801±0.003 | 0.819±0.004 | 0.835±0.002 |
Citeseer | 0.760±0.017 | 0.782±0.005 | 0.741±0.002 | 0.796±0.001 | 0.811±0.002 | 0.847±0.003 |
ACM | 0.790±0.003 | 0.828±0.003 | 0.808±0.004 | 0.832±0.003 | 0.841±0.005 | 0.863±0.002 |
Coauthor | 0.832±0.005 | 0.856±0.010 | 0.838±0.005 | 0.861±0.004 | 0.859±0.002 | 0.877±0.004 |
Tab. 5 Attack performance with GIN as target model architecture
数据集 | Ms | |||||
---|---|---|---|---|---|---|
GraphSAGE | GAT | GIN | ||||
Acc | Fid | Acc | Fid | Acc | Fid | |
DBLP | 0.742±0.002 | 0.773±0.003 | 0.733±0.002 | 0.769±0.010 | 0.806±0.005 | 0.822±0.003 |
PubMed | 0.774±0.006 | 0.791±0.004 | 0.758±0.003 | 0.801±0.003 | 0.819±0.004 | 0.835±0.002 |
Citeseer | 0.760±0.017 | 0.782±0.005 | 0.741±0.002 | 0.796±0.001 | 0.811±0.002 | 0.847±0.003 |
ACM | 0.790±0.003 | 0.828±0.003 | 0.808±0.004 | 0.832±0.003 | 0.841±0.005 | 0.863±0.002 |
Coauthor | 0.832±0.005 | 0.856±0.010 | 0.838±0.005 | 0.861±0.004 | 0.859±0.002 | 0.877±0.004 |
1 | 任奎, 孟泉润, 闫守琨, 等. 人工智能模型数据泄露的攻击与防御研究综述[J].网络与信息安全学报, 2021, 7(1): 1-10. |
REN K, MENG Q R, YAN S K, et al. Survey of artificial intelligence data security and privacy protection[J]. Chinese Journal of Network and Information Security, 2021, 7(1): 1-10. | |
2 | 李欣姣,吴国伟,姚琳,等. 机器学习安全攻击与防御机制研究进展和未来挑战[J]. 软件学报, 2021, 32(2): 406-423. |
LI X J, WU G W, YAO L, et al. Progress and future challenges of security attacks and defense mechanisms in machine learning[J]. Journal of Software, 2021, 32(2): 406-423. | |
3 | GONG X, WANG Q, CHEN Y, et al. Model extraction attacks and defenses on cloud-based machine learning models[J]. IEEE Communications Magazine, 2020, 58(12): 83-89. |
4 | OREKONDY T, SCHIELE B, FRITZ M. Knockoff nets: stealing functionality of black-box models[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4949-4958. |
5 | PAPERNOT N, McDANIEL P, GOODFELLOW I, et al. Practical black-box attacks against machine learning[C]// Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. New York: ACM, 2017: 506-519. |
6 | 陈传涛, 潘丽敏, 罗森林, 等. 基于FGSM样本扩充的模型窃取攻击方法研究[J]. 信息安全研究, 2021, 7(11): 1023-1030. |
CHEN C T, PAN L M, LUO S L, et al. Research on model stealing attack method based on FGSM sample expansion[J]. Journal of Information Security Research, 2021, 7(11): 1023-1030. | |
7 | KARIYAPPA S, PRAKASH A, QURESHI M K. MAZE: data-free model stealing attack using zeroth-order gradient estimation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13809-13818. |
8 | YUAN X, DING L, ZHANG L, et al. ES attack: model stealing against deep neural networks without data hurdles[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6(5): 1258-1270. |
9 | J-B TRUONG, MAINI P, WALLS R J, et al. Data-free model extraction[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2021: 4767-4778. |
10 | MIURA T, HASEGAWA S, SHIBAHARA T. MEGEX: data-free model extraction attack against gradient-based explainable AI[EB/OL].(2021-07-19) [2023-08-17].. |
11 | HONG C, HUANG J, CHEN L Y. MEGA: model stealing via collaborative generator-substitute networks[EB/OL].(2022-01-31)[2023-08-17].. |
12 | SANYAL S, ADDEPALLI S, BABU R V.Towards data-free model stealing in a hard label setting[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 15263-15272. |
13 | TASUMI M, IWAHANA K, YANAI N, et al. First to possess his statistics: data-free model extraction attack on tabular data[EB/OL].(2021-09-30)[2023-08-17].. |
14 | DeFAZIO D, RAMESH A. Adversarial model extraction on graph neural networks[EB/OL].(2019-12-16)[2023-08-17]. . |
15 | WU B, YANG X, PAN S, et al. Model extraction attacks on graph neural networks: taxonomy and realisation[C]// Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security. New York: ACM, 2022: 337-350. |
16 | SHEN Y, HE X, HAN Y, et al. Model stealing attacks against inductive graph neural networks[C]// Proceedings of the 2022 IEEE Symposium on Security and Privacy. Piscataway: IEEE,2022: 1175-1192. |
17 | FRANCESCHI L, NIEPERT M, PONTIL M, et al. Learning discrete structures for graph neural networks[J]. Proceedings of Machine Learning Research, 2019, 97: 1972-1982. |
18 | CHEN Y, WU L, ZAKI M J. Iterative deep graph learning for graph neural networks: better and robust node embeddings [J].Advances in Neural Information Processing Systems, 2020, 33: 19314-19326. |
19 | YUAN H, YU H, GUI S, et al. Explainability in graph neural networks: a taxonomic survey[EB/OL].(2022-07-01)[2023-08-17]. . |
20 | YING R, BOURGEOIS D, YOU J, et al. GNNExplainer: generating explanations for graph neural networks[J].Advances in Neural Information Processing Systems, 2019, 32: 9244-9255. |
21 | RONG Y, HUANG W, XU T, et al.DropEdge: towards deep graph convolutional networks on node classification[EB/OL].(2020-03-12)[2023-08-17].. |
22 | CHEN D, LIN Y, LI W, et al. Measuring and relieving the over-smoothing problem for graph neural networks from the topological view[EB/OL].(2019-11-18)[2023-08-17]. . |
23 | ZHANG Y, PAL S, COATES M, et al.Bayesian graph convolutional neural networks for semi-supervised classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 5829-5836. |
24 | ZHAO T, LIU Y, NEVES L, et al.Data augmentation for graph neural networks[EB/OL].(2020-12-02)[2023-08-17]. . |
25 | KIPF TN, WELLING M.Variational graph auto-encoders[EB/OL].(2016-11-21)[2023-08-17]. . |
26 | XU J, CHEN J, YOU S, et al. Robustness of deep learning models on graphs: a survey[J]. AI Open, 2021, 2: 69-78. |
[1] | Rui GAO, Xuebin CHEN, Zucuan ZHANG. Dynamic social network privacy publishing method for partial graph updating [J]. Journal of Computer Applications, 2024, 44(12): 3831-3838. |
[2] | Yong XIANG, Yanjun LI, Dingyun HUANG, Yu CHEN, Huiqin XIE. Differential and linear characteristic analysis of full-round Shadow algorithm [J]. Journal of Computer Applications, 2024, 44(12): 3839-3843. |
[3] | Zhenhao ZHAO, Shibin ZHANG, Wunan WAN, Jinquan ZHANG, zhi QIN. Delegated proof of stake consensus algorithm based on reputation value and strong blind signature algorithm [J]. Journal of Computer Applications, 2024, 44(12): 3717-3722. |
[4] | Yiting WANG, Wunan WAN, Shibin ZHANG, Jinquan ZHANG, Zhi QIN. Linkable ring signature scheme based on SM9 algorithm [J]. Journal of Computer Applications, 2024, 44(12): 3709-3716. |
[5] | Jing LIANG, Wunan WAN, Shibin ZHANG, Jinquan ZHANG, Zhi QIN. Traceability storage model of charity system oriented to master-slave chain [J]. Journal of Computer Applications, 2024, 44(12): 3751-3758. |
[6] | Deyuan LIU, Jingquan ZHANG, Xing ZHANG, Wunan WAN, Shibin ZHANG, Zhi QIN. Cross-chain identity authentication scheme based on certificate-less signcryption [J]. Journal of Computer Applications, 2024, 44(12): 3731-3740. |
[7] | Xin ZHANG, Jinquan ZHANG, Deyuan LIU, Wunan WAN, Shibin ZHANG, Zhi QIN. Cross-chain identity management scheme based on identity-based proxy re-encryption [J]. Journal of Computer Applications, 2024, 44(12): 3723-3730. |
[8] |
DENG Yilin, YU Fajiang.
Pseudo-random number generator based on LSTM and separable self-attention mechanism#br#
#br#
[J]. Journal of Computer Applications, 0, (): 0-0.
|
[9] | . Correlation power analysis of advanced encryption standard algorithm based on uniform manifold approximation and projection [J]. Journal of Computer Applications, 0, (): 0-0. |
[10] | . Dynamic searchable encryption scheme based on puncture pseudorandom function [J]. Journal of Computer Applications, 0, (): 0-0. |
[11] | . fedPF: Federated learning for personalization and fairness [J]. Journal of Computer Applications, 0, (): 0-0. |
[12] | . Review of research on conflict-based cache side-channel attacks and eviction sets [J]. Journal of Computer Applications, 0, (): 0-0. |
[13] | . Secure and efficient frequency estimation method based on shuffled differential privacy [J]. Journal of Computer Applications, 0, (): 0-0. |
[14] | . Blockchain-based model for notarization of simulation testing data in autonomous driving [J]. Journal of Computer Applications, 0, (): 0-0. |
[15] | . Fine-grained result verifiable searchable encryption scheme with designated tester in cloud [J]. Journal of Computer Applications, 0, (): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||