Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Reconstruction algorithm for highly undersampled magnetic resonance images based on residual graph convolutional neural network
Xiaoyu FAN, Suzhen LIN, Yanbo WANG, Feng LIU, Dawei LI
Journal of Computer Applications    2023, 43 (4): 1261-1268.   DOI: 10.11772/j.issn.1001-9081.2022020309
Abstract420)   HTML7)    PDF (2569KB)(153)    PDF(mobile) (2309KB)(4)    Save

Magnetic Resonance Imaging (MRI) is widely used in the diagnosis of complex diseases because of its non-invasiveness and good soft tissue contrast. Due to the low speed of MRI, most of the acceleration is currently performed by highly undersampled Magnetic Resonance (MR) signals in k-space. However, the representative algorithms often have the problem of blurred details when reconstructing highly undersampled MR images. Therefore, a highly undersampled MR image reconstruction algorithm based on Residual Graph Convolutional Neural nETwork (RGCNET) was proposed. Firstly, auto-encoding technology and Graph Convolutional neural Network (GCN) were used to build a generator. Secondly, the undersampled image was input into the feature extraction (encoder) network to extract features at the bottom layer. Thirdly, the high-level features of MR images were extracted by the GCN block. Fourthly, the initial reconstructed image was generated through the decoder network. Finally, the final high-resolution reconstructed image was obtained through a dynamic game between the generator and the discriminator. Test results on FastMRI dataset show that at 10%, 20%, 30%, 40% and 50% sampling rates, compared with spatial orthogonal attention mechanism based MRI reconstruction algorithm SOGAN(Spatial Orthogonal attention Generative Adversarial Network), the proposed algorithm decreases 3.5%, 26.6%, 23.9%, 13.3% and 14.3% on Normalized Root Mean Square Error (NRMSE), increases 1.2%, 8.7%, 6.9%, 2.9% and 3.2% on Peak Signal-to-Noise Ratio (PSNR) and increases 0.8%, 2.9%, 1.5%, 0.5% and 0.5% on Structural SIMilarity (SSIM) respectively. At the same time, subjective observation also proves that the proposed algorithm can preserve more details and have more realistic visual effects.

Table and Figures | Reference | Related Articles | Metrics