Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (4): 1261-1268.DOI: 10.11772/j.issn.1001-9081.2022020309
• Multimedia computing and computer simulation • Previous Articles
Xiaoyu FAN1, Suzhen LIN1(), Yanbo WANG1, Feng LIU2, Dawei LI1
Received:
2022-03-16
Revised:
2022-06-08
Accepted:
2022-06-08
Online:
2022-08-16
Published:
2023-04-10
Contact:
Suzhen LIN
About author:
FAN Xiaoyu, born in 1998, M. S. candidate. His research interests include image processing, Magnetic Resonance Imaging (MRI) reconstruction.Supported by:
通讯作者:
蔺素珍
作者简介:
樊小宇(1998—),男,山西原平人,硕士研究生,CCF会员,主要研究方向:图像处理、磁共振成像(MRI)重建;基金资助:
CLC Number:
Xiaoyu FAN, Suzhen LIN, Yanbo WANG, Feng LIU, Dawei LI. Reconstruction algorithm for highly undersampled magnetic resonance images based on residual graph convolutional neural network[J]. Journal of Computer Applications, 2023, 43(4): 1261-1268.
樊小宇, 蔺素珍, 王彦博, 刘峰, 李大威. 基于残差图卷积神经网络的高倍欠采样核磁共振图像重建算法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1261-1268.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022020309
采样模式 | 算法 | NRMSE | PSNR/dB | SSIM |
---|---|---|---|---|
1DGaussian | ZF | 0.129±0.046 | 29.618±2.836 | 0.892±0.044 |
RGCNET | 0.085±0.033 | 33.335±2.876 | 0.935±0.032 | |
2DGaussian | ZF | 0.139±0.044 | 28.844±2.892 | 0.839±0.070 |
RGCNET | 0.089±0.034 | 32.944±3.241 | 0.923±0.039 | |
POSSION | ZF | 0.109±0.033 | 30.930±3.075 | 0.884±0.058 |
RGCNET | 0.074±0.029 | 34.555±3.655 | 0.940±0.037 | |
Radial | ZF | 0.128±0.039 | 29.583±2.939 | 0.873±0.061 |
RGCNET | 0.069±0.028 | 35.257±3.629 | 0.949±0.031 |
Tab. 1 Analysis of reconstruction results using different masks at 20% sampling rate
采样模式 | 算法 | NRMSE | PSNR/dB | SSIM |
---|---|---|---|---|
1DGaussian | ZF | 0.129±0.046 | 29.618±2.836 | 0.892±0.044 |
RGCNET | 0.085±0.033 | 33.335±2.876 | 0.935±0.032 | |
2DGaussian | ZF | 0.139±0.044 | 28.844±2.892 | 0.839±0.070 |
RGCNET | 0.089±0.034 | 32.944±3.241 | 0.923±0.039 | |
POSSION | ZF | 0.109±0.033 | 30.930±3.075 | 0.884±0.058 |
RGCNET | 0.074±0.029 | 34.555±3.655 | 0.940±0.037 | |
Radial | ZF | 0.128±0.039 | 29.583±2.939 | 0.873±0.061 |
RGCNET | 0.069±0.028 | 35.257±3.629 | 0.949±0.031 |
采样率/% | 算法 | NRMSE | PSNR/dB | SSIM |
---|---|---|---|---|
10 | ZF | 0.197±0.067 | 25.900±3.019 | 0.757±0.087 |
DAGAN | 0.167±0.057 | 27.378±3.104 | 0.803±0.080 | |
RefineGAN | 0.165±0.056 | 27.430±3.094 | 0.800±0.082 | |
ESSGAN | 0.157±0.050 | 27.855±3.165 | 0.833±0.074 | |
SOGAN | 0.142±0.047 | 28.718±3.154 | 0.854±0.066 | |
RGCNET | 0.137±0.047 | 29.050±3.218 | 0.861±0.063 | |
20 | ZF | 0.128±0.039 | 29.583±2.939 | 0.873±0.061 |
DAGAN | 0.088±0.034 | 33.050±3.597 | 0.918±0.049 | |
RefineGAN | 0.085±0.031 | 33.241±3.331 | 0.929±0.040 | |
ESSGAN | 0.094±0.036 | 32.394±2.911 | 0.922±0.035 | |
SOGAN | 0.094±0.036 | 32.444±3.023 | 0.922±0.038 | |
RGCNET | 0.069±0.028 | 35.257±3.629 | 0.949±0.031 | |
30 | ZF | 0.096±0.029 | 32.039±3.504 | 0.917±0.046 |
DAGAN | 0.062±0.023 | 36.077±3.578 | 0.958±0.026 | |
RefineGAN | 0.071±0.029 | 34.843±2.899 | 0.946±0.027 | |
ESSGAN | 0.056±0.023 | 36.988±3.860 | 0.965±0.024 | |
SOGAN | 0.067±0.027 | 35.483±3.227 | 0.956±0.024 | |
RGCNET | 0.051±0.021 | 37.943±3.862 | 0.970±0.020 | |
40 | ZF | 0.074±0.022 | 34.332±3.209 | 0.945±0.034 |
DAGAN | 0.047±0.018 | 38.434±3.654 | 0.975±0.017 | |
RefineGAN | 0.059±0.024 | 36.392±2.809 | 0.964±0.017 | |
ESSGAN | 0.049±0.019 | 38.103±3.351 | 0.974±0.016 | |
SOGAN | 0.045±0.018 | 38.942±3.665 | 0.976±0.016 | |
RGCNET | 0.039±0.016 | 40.081±3.755 | 0.981±0.012 | |
50 | ZF | 0.057±0.017 | 36.631±3.413 | 0.965±0.025 |
DAGAN | 0.037±0.014 | 40.460±3.573 | 0.982±0.010 | |
RefineGAN | 0.045±0.018 | 38.843±2.918 | 0.978±0.011 | |
ESSGAN | 0.048±0.021 | 38.346±2.766 | 0.978±0.011 | |
SOGAN | 0.035±0.016 | 41.112±3.573 | 0.984±0.015 | |
RGCNET | 0.030±0.012 | 42.411±3.688 | 0.989±0.007 |
Tab. 2 Quantitative comparison of reconstruction results of different algorithms at different sampling rates
采样率/% | 算法 | NRMSE | PSNR/dB | SSIM |
---|---|---|---|---|
10 | ZF | 0.197±0.067 | 25.900±3.019 | 0.757±0.087 |
DAGAN | 0.167±0.057 | 27.378±3.104 | 0.803±0.080 | |
RefineGAN | 0.165±0.056 | 27.430±3.094 | 0.800±0.082 | |
ESSGAN | 0.157±0.050 | 27.855±3.165 | 0.833±0.074 | |
SOGAN | 0.142±0.047 | 28.718±3.154 | 0.854±0.066 | |
RGCNET | 0.137±0.047 | 29.050±3.218 | 0.861±0.063 | |
20 | ZF | 0.128±0.039 | 29.583±2.939 | 0.873±0.061 |
DAGAN | 0.088±0.034 | 33.050±3.597 | 0.918±0.049 | |
RefineGAN | 0.085±0.031 | 33.241±3.331 | 0.929±0.040 | |
ESSGAN | 0.094±0.036 | 32.394±2.911 | 0.922±0.035 | |
SOGAN | 0.094±0.036 | 32.444±3.023 | 0.922±0.038 | |
RGCNET | 0.069±0.028 | 35.257±3.629 | 0.949±0.031 | |
30 | ZF | 0.096±0.029 | 32.039±3.504 | 0.917±0.046 |
DAGAN | 0.062±0.023 | 36.077±3.578 | 0.958±0.026 | |
RefineGAN | 0.071±0.029 | 34.843±2.899 | 0.946±0.027 | |
ESSGAN | 0.056±0.023 | 36.988±3.860 | 0.965±0.024 | |
SOGAN | 0.067±0.027 | 35.483±3.227 | 0.956±0.024 | |
RGCNET | 0.051±0.021 | 37.943±3.862 | 0.970±0.020 | |
40 | ZF | 0.074±0.022 | 34.332±3.209 | 0.945±0.034 |
DAGAN | 0.047±0.018 | 38.434±3.654 | 0.975±0.017 | |
RefineGAN | 0.059±0.024 | 36.392±2.809 | 0.964±0.017 | |
ESSGAN | 0.049±0.019 | 38.103±3.351 | 0.974±0.016 | |
SOGAN | 0.045±0.018 | 38.942±3.665 | 0.976±0.016 | |
RGCNET | 0.039±0.016 | 40.081±3.755 | 0.981±0.012 | |
50 | ZF | 0.057±0.017 | 36.631±3.413 | 0.965±0.025 |
DAGAN | 0.037±0.014 | 40.460±3.573 | 0.982±0.010 | |
RefineGAN | 0.045±0.018 | 38.843±2.918 | 0.978±0.011 | |
ESSGAN | 0.048±0.021 | 38.346±2.766 | 0.978±0.011 | |
SOGAN | 0.035±0.016 | 41.112±3.573 | 0.984±0.015 | |
RGCNET | 0.030±0.012 | 42.411±3.688 | 0.989±0.007 |
算法 | GCN | ResBlock | Lssim+ Lgrad | LFFL | NRMSE | PSNR/dB | SSIM |
---|---|---|---|---|---|---|---|
ZF | 0.128± 0.039 | 29.583± 2.939 | 0.873± 0.061 | ||||
RGCNET-A | × | √ | √ | √ | 0.081± 0.029 | 33.751± 3.636 | 0.943± 0.032 |
RGCNET-B | √ | √ | × | √ | 0.085± 0.032 | 33.320± 3.470 | 0.938± 0.033 |
RGCNET-C | √ | √ | √ | × | 0.081± 0.029 | 33.737± 3.618 | 0.944± 0.032 |
RGCNET-D | √ | × | √ | √ | 0.076± 0.029 | 34.388± 3.300 | 0.942± 0.032 |
RGCNET | √ | √ | √ | √ | 0.069± 0.028 | 35.257± 3.630 | 0.949± 0.032 |
Tab. 3 Ablation experimental results of different influencing factors at 20% sampling rate
算法 | GCN | ResBlock | Lssim+ Lgrad | LFFL | NRMSE | PSNR/dB | SSIM |
---|---|---|---|---|---|---|---|
ZF | 0.128± 0.039 | 29.583± 2.939 | 0.873± 0.061 | ||||
RGCNET-A | × | √ | √ | √ | 0.081± 0.029 | 33.751± 3.636 | 0.943± 0.032 |
RGCNET-B | √ | √ | × | √ | 0.085± 0.032 | 33.320± 3.470 | 0.938± 0.033 |
RGCNET-C | √ | √ | √ | × | 0.081± 0.029 | 33.737± 3.618 | 0.944± 0.032 |
RGCNET-D | √ | × | √ | √ | 0.076± 0.029 | 34.388± 3.300 | 0.942± 0.032 |
RGCNET | √ | √ | √ | √ | 0.069± 0.028 | 35.257± 3.630 | 0.949± 0.032 |
var | 算法 | NRMSE | PSNR/dB | SSIM |
---|---|---|---|---|
1 | ZF | 0.128±0.039 | 29.541±2.894 | 0.873±0.056 |
DAGAN | 0.089±0.034 | 32.894±3.462 | 0.915±0.048 | |
RefineGAN | 0.087±0.032 | 33.093±3.205 | 0.927±0.039 | |
ESSGAN | 0.095±0.036 | 32.291±2.835 | 0.921±0.035 | |
SOGAN | 0.095±0.036 | 32.327±2.932 | 0.919±0.037 | |
RGCNET | 0.070±0.029 | 35.001±3.390 | 0.946±0.030 | |
3 | ZF | 0.133±0.041 | 29.186±2.622 | 0.865±0.047 |
DAGAN | 0.098±0.037 | 31.981±2.837 | 0.898±0.045 | |
RefineGAN | 0.096±0.036 | 32.206±2.615 | 0.910±0.036 | |
ESSGAN | 0.103±0.041 | 31.603±2.415 | 0.907±0.032 | |
SOGAN | 0.103±0.041 | 31.596±2.468 | 0.903±0.033 | |
RGCNET | 0.081±0.034 | 33.662±2.504 | 0.930±0.027 | |
5 | ZF | 0.143±0.046 | 28.580±2.269 | 0.846±0.040 |
DAGAN | 0.113±0.044 | 30.736±2.246 | 0.870±0.040 | |
RefineGAN | 0.110±0.043 | 30.970±2.042 | 0.881±0.032 | |
ESSGAN | 0.116±0.048 | 30.568±1.945 | 0.882±0.028 | |
SOGAN | 0.116±0.048 | 30.523±1.965 | 0.876±0.028 | |
RGCNET | 0.098±0.042 | 32.051±1.843 | 0.903±0.022 | |
7 | ZF | 0.155±0.052 | 27.845±1.952 | 0.819±0.035 |
DAGAN | 0.130±0.051 | 29.468±1.855 | 0.837±0.037 | |
RefineGAN | 0.127±0.051 | 29.689±1.643 | 0.846±0.028 | |
ESSGAN | 0.131±0.056 | 29.441±1.583 | 0.850±0.024 | |
SOGAN | 0.132±0.056 | 29.373±1.588 | 0.842±0.023 | |
RGCNET | 0.116±0.050 | 30.529±1.454 | 0.872±0.018 | |
10 | ZF | 0.176±0.061 | 26.677±1.595 | 0.771±0.030 |
DAGAN | 0.158±0.061 | 27.700±1.508 | 0.785±0.034 | |
RefineGAN | 0.155±0.062 | 27.913±1.280 | 0.788±0.025 | |
ESSGAN | 0.157±0.067 | 27.825±1.239 | 0.798±0.023 | |
SOGAN | 0.158±0.067 | 27.748±1.238 | 0.790±0.020 | |
RGCNET | 0.144±0.060 | 28.577±1.165 | 0.824±0.015 |
Tab. 4 Quantitative comparison of reconstruction results of different algorithms under different degrees of Gaussian noise
var | 算法 | NRMSE | PSNR/dB | SSIM |
---|---|---|---|---|
1 | ZF | 0.128±0.039 | 29.541±2.894 | 0.873±0.056 |
DAGAN | 0.089±0.034 | 32.894±3.462 | 0.915±0.048 | |
RefineGAN | 0.087±0.032 | 33.093±3.205 | 0.927±0.039 | |
ESSGAN | 0.095±0.036 | 32.291±2.835 | 0.921±0.035 | |
SOGAN | 0.095±0.036 | 32.327±2.932 | 0.919±0.037 | |
RGCNET | 0.070±0.029 | 35.001±3.390 | 0.946±0.030 | |
3 | ZF | 0.133±0.041 | 29.186±2.622 | 0.865±0.047 |
DAGAN | 0.098±0.037 | 31.981±2.837 | 0.898±0.045 | |
RefineGAN | 0.096±0.036 | 32.206±2.615 | 0.910±0.036 | |
ESSGAN | 0.103±0.041 | 31.603±2.415 | 0.907±0.032 | |
SOGAN | 0.103±0.041 | 31.596±2.468 | 0.903±0.033 | |
RGCNET | 0.081±0.034 | 33.662±2.504 | 0.930±0.027 | |
5 | ZF | 0.143±0.046 | 28.580±2.269 | 0.846±0.040 |
DAGAN | 0.113±0.044 | 30.736±2.246 | 0.870±0.040 | |
RefineGAN | 0.110±0.043 | 30.970±2.042 | 0.881±0.032 | |
ESSGAN | 0.116±0.048 | 30.568±1.945 | 0.882±0.028 | |
SOGAN | 0.116±0.048 | 30.523±1.965 | 0.876±0.028 | |
RGCNET | 0.098±0.042 | 32.051±1.843 | 0.903±0.022 | |
7 | ZF | 0.155±0.052 | 27.845±1.952 | 0.819±0.035 |
DAGAN | 0.130±0.051 | 29.468±1.855 | 0.837±0.037 | |
RefineGAN | 0.127±0.051 | 29.689±1.643 | 0.846±0.028 | |
ESSGAN | 0.131±0.056 | 29.441±1.583 | 0.850±0.024 | |
SOGAN | 0.132±0.056 | 29.373±1.588 | 0.842±0.023 | |
RGCNET | 0.116±0.050 | 30.529±1.454 | 0.872±0.018 | |
10 | ZF | 0.176±0.061 | 26.677±1.595 | 0.771±0.030 |
DAGAN | 0.158±0.061 | 27.700±1.508 | 0.785±0.034 | |
RefineGAN | 0.155±0.062 | 27.913±1.280 | 0.788±0.025 | |
ESSGAN | 0.157±0.067 | 27.825±1.239 | 0.798±0.023 | |
SOGAN | 0.158±0.067 | 27.748±1.238 | 0.790±0.020 | |
RGCNET | 0.144±0.060 | 28.577±1.165 | 0.824±0.015 |
1 | 杜秀丽,胡兴,陈波,等. 基于加权非局部相似性的视频压缩感知多假设重构算法[J]. 计算机科学, 2019, 46(1): 291-296. 10.11896/j.issn.1002-137X.2019.01.045 |
DU X L, HU X, CHEN B, et al. Multi-hypothesis reconstruction algorithm of DCVS based on weighted non-local similarity[J]. Computer Science, 2019, 46(1): 291-296. 10.11896/j.issn.1002-137X.2019.01.045 | |
2 | 杜年茂,徐佳陈,肖志勇. 基于卷积神经网络的欠采样脑部核磁共振图像重建算法[J]. 计算机应用, 2020, 40(10): 3060-3065. 10.11772/j.issn.1001-9081.2020030344 |
DU N M, XU J C, XIAO Z Y. Undersampled brain magnetic resonance image reconstruction method based on convolutional neural network[J]. Journal of Computer Applications, 2020, 40(10): 3060-3065. 10.11772/j.issn.1001-9081.2020030344 | |
3 | 薛方,许朝萍,刘耀飞,等. 基于K空间采样的MRI重建算法研究[J]. 中国医学装备, 2021, 18(8):1-4. 10.3969/J.ISSN.1672-8270.2021.08.001 |
XUE F, XU C P, LIU Y F, et al. Research on MRI reconstruction algorithm based on K-space sampling[J]. China Medical Equipment, 2021, 18(8): 1-4. 10.3969/J.ISSN.1672-8270.2021.08.001 | |
4 | 马凤飞,蔺素珍,刘峰,等. 基于语义对比生成对抗网络的高倍欠采MRI重建[J]. 计算机科学, 2021, 48(4):169-173. 10.11896/jsjkx.200600047 |
MA F F, LIN S Z, LIU F, et al. Semantic-contrast generative adversarial network based highly undersampled MRI reconstruction[J]. Computer Science, 2021, 48(4):169-173. 10.11896/jsjkx.200600047 | |
5 | WANG S S, SU Z H, YING L, et al. Accelerating magnetic resonance imaging via deep learning[C]// Proceedings of the IEEE 13th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2016: 514-517. 10.1109/isbi.2016.7493320 |
6 | LEE D, YOO J, YE J C. Deep artifact learning for compressed sensing and parallel MRI[EB/OL]. (2017-03-03) [2022-03-10].. 10.1109/isbi.2017.7950457 |
7 | EO T, SHIN H, JUN Y, et al. Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction[J]. Medical Image Analysis, 2020, 63: No.101689. 10.1016/j.media.2020.101689 |
8 | YANG G, YU S M, DONG H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1310-1321. 10.1109/tmi.2017.2785879 |
9 | QUAN T M, NGUYEN-DUC T, JEONG W K. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1488-1497. 10.1109/tmi.2018.2820120 |
10 | AGGARWAL H K, MANI M P, JACOB M. MoDL: model-based deep learning architecture for inverse problems[J]. IEEE Transactions on Medical Imaging, 2019, 38(2): 394-405. 10.1109/tmi.2018.2865356 |
11 | HAMMERNIK K, KLATZER T, KOBLER E, et al. Learning a variational network for reconstruction of accelerated MRI data[J]. Magnetic Resonance in Medicine, 2018, 79(6): 3055-3071. 10.1002/mrm.26977 |
12 | HAN Y, SUNWOO L, YE J C. k-space deep learning for accelerated MRI[J]. IEEE Transactions on Medical Imaging, 2020, 39(2): 377-386. 10.1109/tmi.2019.2927101 |
13 | LV J, WANG C Y, YANG G. PIC-GAN: a parallel imaging coupled generative adversarial network for accelerated multi-channel MRI Reconstruction[J]. Diagnostics, 2021, 11(1): No.61. 10.3390/diagnostics11010061 |
14 | ZHOU W Z, DU H Q, MEI W B, et al. Efficient structurally-strengthened generative adversarial network for MRI reconstruction[J]. Neurocomputing, 2021, 422: 51-61. 10.1016/j.neucom.2020.09.008 |
15 | LI G Y, LV J, WANG C Y. A modified generative adversarial network using spatial and channel-wise attention for CS-MRI reconstruction[J]. IEEE Access, 2021, 9:83185-83198. 10.1109/access.2021.3086839 |
16 | ZHOU W Z, DU H Q, MEI W B, et al. Spatial orthogonal attention generative adversarial network for MRI reconstruction[J]. Medical Physics, 2021, 48(2): 627-639. 10.1002/mp.14509 |
17 | WANG X T, XIE L B, DONG C, et al. Real-ESRGAN: training real-world blind super-resolution with pure synthetic data[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 1905-1914. 10.1109/iccvw54120.2021.00217 |
18 | BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL]. (2014-05-21) [2021-12-20].. 10.1017/cbo9780511761942.003 |
19 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2021-12-20].. 10.48550/arXiv.1609.02907 |
20 | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 1025-1035. 10.7551/mitpress/11474.003.0014 |
21 | GAO H Y, WANG Z Y, JI S W. Large-scale learnable graph convolutional networks[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1416-1424. 10.1145/3219819.3219947 |
22 | LI G H, MÜLLER M, QIAN G C, et al. DeepGCNs: making GCNs go as deep as CNNs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021(Early Access):1-1. 10.1109/tpami.2021.3074057 |
23 | XU B Y, YIN H J. Graph convolutional networks in feature space for image deblurring and super-resolution[C]// Proceedings of the 2021 International Joint Conference on Neural Networks. Piscataway: IEEE, 2021: 1-8. 10.1109/ijcnn52387.2021.9534213 |
24 | LV J, ZHU J, YANG G. Which GAN? a comparative study of generative adversarial network-based fast MRI reconstruction[J]. Philosophical Transactions of the Royal Society A, 2021, 379(2200): No.20200203. 10.1098/rsta.2020.0203 |
25 | WANG Y. Single image super-resolution with u-net generative adversarial networks[C]// Proceedings of the IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference. Piscataway: IEEE, 2021: 1835-1840. 10.1109/imcec51613.2021.9482317 |
26 | VASUDEVA B, DEORA P, BHATTACHARYA S, et al. Compressed sensing MRI reconstruction with Co-VeGAN: complex-valued generative adversarial network[C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1779-1788. 10.1109/wacv51458.2022.00184 |
27 | HUANG J H, WANG S S, ZHOU G J, et al. Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction[J]. Magnetic Resonance Imaging, 2022, 87: 38-46. 10.1016/j.mri.2021.12.003 |
28 | ZHOU W Z, DU H Q, MEI W B, et al. MRI reconstruction using graph reasoning generative adversarial network[C]// Proceedings of the IEEE 6th International Conference on Computer and Communication Systems. Piscataway: IEEE, 2021: 268-273. 10.1109/icccs52626.2021.9449191 |
29 | JIANG L M, DAI B, WU W, et al. Focal frequency loss for image reconstruction and synthesis[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13899-13909. 10.1109/iccv48922.2021.01366 |
[1] | Zhoubo XU, Puqing CHEN, Huadong LIU, Xin YANG. Deep graph matching model based on self-attention network [J]. Journal of Computer Applications, 2023, 43(4): 1005-1012. |
[2] | Cheng FANG, Bei LI, Ping HAN, Qiong WU. Fine-grained emotion classification of Chinese microblog based on syntactic dependency graph [J]. Journal of Computer Applications, 2023, 43(4): 1056-1061. |
[3] | Xu ZHANG, Long SHENG, Haifang ZHANG, Feng TIAN, Wei WANG. Pre-hospital emergency text classification model based on label confusion [J]. Journal of Computer Applications, 2023, 43(4): 1050-1055. |
[4] | Guangyi DOU, Fanan WEI, Chuangyi QIU, Jianshu CHAO. Tracking appearance features based on attention self-correlation mechanism [J]. Journal of Computer Applications, 2023, 43(4): 1248-1254. |
[5] | Hao WANG, Zicheng WANG, Chao ZHANG, Yunsheng MA. Generative adversarial network based data uncertainty quantification method [J]. Journal of Computer Applications, 2023, 43(4): 1094-1101. |
[6] | Xuedong HE, Shibin XUAN, Kuan WANG, Mengnan CHEN. DeepLabV3+ image segmentation algorithm fusing cumulative distribution function and channel attention mechanism [J]. Journal of Computer Applications, 2023, 43(3): 936-942. |
[7] | Boyi FU, Yuncong PENG, Xin LAN, Xiaolin QIN. Survey of label noise learning algorithms based on deep learning [J]. Journal of Computer Applications, 2023, 43(3): 674-684. |
[8] | Jiangfeng ZHANG, Tao YAN, Bin CHEN, Yuhua QIAN, Yantao SONG. Multi-depth-of-field 3D shape reconstruction with global spatio-temporal feature coupling [J]. Journal of Computer Applications, 2023, 43(3): 894-902. |
[9] | Rongjun CHEN, Xuanhui YAN, Chaocheng YANG. Fusion imaging-based recurrent capsule classification network for time series [J]. Journal of Computer Applications, 2023, 43(3): 692-699. |
[10] | Chunyong YIN, Liwen ZHOU. Unsupervised time series anomaly detection model based on re-encoding [J]. Journal of Computer Applications, 2023, 43(3): 804-811. |
[11] | Qi WANG, Hang LEI, Xupeng WANG. Deep face verification under pose interference [J]. Journal of Computer Applications, 2023, 43(2): 595-600. |
[12] | Ping WANG, Nan CHEN, Lei LU. Fall detection algorithm based on scene prior and attention guidance [J]. Journal of Computer Applications, 2023, 43(2): 529-535. |
[13] | Lingling TAO, Bo LIU, Wenbo LI, Xiping HE. Controllable face editing algorithm with closed-form solution [J]. Journal of Computer Applications, 2023, 43(2): 601-607. |
[14] | Ruoying WANG, Fan LYU, Liuqing ZHAO, Fuyuan HU. Floorplan generation algorithm integrating user requirements and boundary constraints [J]. Journal of Computer Applications, 2023, 43(2): 575-582. |
[15] | Gang CHEN, Yongwei LIAO, Zhenguo YANG, Wenying LIU. Image inpainting algorithm of multi-scale generative adversarial network based on multi-feature fusion [J]. Journal of Computer Applications, 2023, 43(2): 536-544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||