Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (3): 916-921.DOI: 10.11772/j.issn.1001-9081.2023030376
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Ruifeng HOU1,2, Pengcheng ZHANG1,2(
), Liyuan ZHANG1,2, Zhiguo GUI1,2, Yi LIU1,2, Haowen ZHANG1,2, Shubin WANG1,2
Received:2023-04-06
Revised:2023-07-03
Accepted:2023-07-04
Online:2023-07-31
Published:2024-03-10
Contact:
Pengcheng ZHANG
About author:HOU Ruifeng, born in 1998, M. S. candidate. His research interests include medical image reconstruction, medical image processing.Supported by:
侯瑞峰1,2, 张鹏程1,2(
), 张丽媛1,2, 桂志国1,2, 刘祎1,2, 张浩文1,2, 王书斌1,2
通讯作者:
张鹏程
作者简介:侯瑞峰(1998—),男,河北邢台人,硕士研究生,主要研究方向:医学图像重建、医学图像处理基金资助:CLC Number:
Ruifeng HOU, Pengcheng ZHANG, Liyuan ZHANG, Zhiguo GUI, Yi LIU, Haowen ZHANG, Shubin WANG. Iterative denoising network based on total variation regular term expansion[J]. Journal of Computer Applications, 2024, 44(3): 916-921.
侯瑞峰, 张鹏程, 张丽媛, 桂志国, 刘祎, 张浩文, 王书斌. 基于全变分正则项展开的迭代去噪网络[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 916-921.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023030376
| 方法 | PSNR/dB | SSIM | VIF |
|---|---|---|---|
| LDCT | 27.876±1.311 | 0.585±0.055 | 0.326±0.055 |
| BM3D | 32.956±1.044 | 0.744±0.044 | 0.511±0.051 |
| REDCNN | 34.101±1.155 | 0.802±0.044 | 0.574±0.055 |
| EDCNN | 33.755±1.143 | 0.808±0.035 | 0.513±0.055 |
| CNCL | 33.745±1.074 | 0.801±0.034 | 0.565±0.043 |
| TED-Net | 33.955±1.141 | 0.803±0.035 | 0.565±0.050 |
| CPTV-Net | 34.499±1.152 | 0.815±0.034 | 0.643±0.041 |
Tab. 1 Quantitative analysis of image quality using different methods on Mayo dataset (mean ± standard deviation)
| 方法 | PSNR/dB | SSIM | VIF |
|---|---|---|---|
| LDCT | 27.876±1.311 | 0.585±0.055 | 0.326±0.055 |
| BM3D | 32.956±1.044 | 0.744±0.044 | 0.511±0.051 |
| REDCNN | 34.101±1.155 | 0.802±0.044 | 0.574±0.055 |
| EDCNN | 33.755±1.143 | 0.808±0.035 | 0.513±0.055 |
| CNCL | 33.745±1.074 | 0.801±0.034 | 0.565±0.043 |
| TED-Net | 33.955±1.141 | 0.803±0.035 | 0.565±0.050 |
| CPTV-Net | 34.499±1.152 | 0.815±0.034 | 0.643±0.041 |
| 方法 | PSNR/dB | SSIM | VIF |
|---|---|---|---|
| LDCT | 31.630±2.160 | 0.904±0.030 | 0.359±0.055 |
| BM3D | 32.549±2.214 | 0.929±0.022 | 0.442±0.055 |
| REDCNN | 32.847±2.218 | 0.932±0.021 | 0.464±0.048 |
| EDCNN | 32.665±2.207 | 0.925±0.023 | 0.424±0.050 |
| CNCL | 31.947±1.934 | 0.929±.0244 | 0.399±0.047 |
| TED-Net | 32.914±2.303 | 0.932±0.021 | 0.458±0.049 |
| CPTV-Net | 33.466±2.288 | 0.937±0.020 | 0.496±0.051 |
Tab. 2 Quantitative analysis of image quality using different methods on Piglet dataset (mean ± standard deviation)
| 方法 | PSNR/dB | SSIM | VIF |
|---|---|---|---|
| LDCT | 31.630±2.160 | 0.904±0.030 | 0.359±0.055 |
| BM3D | 32.549±2.214 | 0.929±0.022 | 0.442±0.055 |
| REDCNN | 32.847±2.218 | 0.932±0.021 | 0.464±0.048 |
| EDCNN | 32.665±2.207 | 0.925±0.023 | 0.424±0.050 |
| CNCL | 31.947±1.934 | 0.929±.0244 | 0.399±0.047 |
| TED-Net | 32.914±2.303 | 0.932±0.021 | 0.458±0.049 |
| CPTV-Net | 33.466±2.288 | 0.937±0.020 | 0.496±0.051 |
| 1 | TIAN C, FEI L, ZHENG W, et al. Deep learning on image denoising: an overview [J]. Neural Networks, 2020, 131: 251-275. 10.1016/j.neunet.2020.07.025 |
| 2 | FERUGLIO P F, VINEGONI C, GROS J, et al. Block matching 3D random noise filtering for absorption optical projection tomography [J]. Physics in Medicine and Biology, 2010, 55(18): 5401-5415. 10.1088/0031-9155/55/18/009 |
| 3 | MEI Y, FAN Y, ZHOU Y. Image super-resolution with non-local sparse attention [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 3517-3526. 10.1109/cvpr46437.2021.00352 |
| 4 | CAI W, JIANG J, OUYANG S. Hyperspectral image denoising using adaptive weight graph total variation regularization and low-rank matrix recovery [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 5509805. 10.1109/lgrs.2021.3113078 |
| 5 | WANG Z, QIAN C, GUO D, et al. One-dimensional deep low-rank and sparse network for accelerated MRI [J]. IEEE Transactions on Medical Imaging, 2023, 42(1): 79-90. 10.1109/tmi.2022.3203312 |
| 6 | ZHANG K, GAO X, TAO D, et al. Single image super-resolution with non-local means and steering kernel regression [J]. IEEE Transactions on Image Processing, 2012, 21(11): 4544-4556. 10.1109/tip.2012.2208977 |
| 7 | LIU P, ZHANG H, ZHANG K, et al. Multi-level wavelet-CNN for image restoration [C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 773-782. 10.1109/cvprw.2018.00121 |
| 8 | CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network [J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524-2535. 10.1109/tmi.2017.2715284 |
| 9 | LIANG T, JIN Y, LI Y, et al. EDCNN: edge enhancement-based densely connected network with compound loss for low-dose CT denoising [C]// Proceedings of the 2020 15th IEEE International Conference on Signal Processing. Piscataway: IEEE, 2020: 193-198. 10.1109/icsp48669.2020.9320928 |
| 10 | GENG M, MENG X, YU J, et al. Content-noise complementary learning for medical image denoising [J]. IEEE Transactions on Medical Imaging, 2021, 41(2): 407-419. 10.1109/tmi.2021.3113365 |
| 11 | WANG D, WU Z, YU H. TED-Net: Convolution-free T2T Vision Transformer-based encoder-decoder dilation network for low-dose CT denoising [C]// Proceedings of the 2021 International Workshop on Machine Learning in Medical Imaging. Cham: Springer, 2021: 416-425. 10.1007/978-3-030-87589-3_43 |
| 12 | MONGA V, LI Y, ELDAR Y C. Algorithm unrolling: interpretable, efficient deep learning for signal and image processing [J]. IEEE Signal Processing Magazine, 2021, 38(2): 18-44. 10.1109/msp.2020.3016905 |
| 13 | XIA W, SHAN H, WANG G, et al. Synergizing physics/model-based and data-driven methods for low-dose CT [EB/OL]. [2022-07-01]. . 10.1109/msp.2022.3204407 |
| 14 | YANG Y, SUN J, LI H, et al. ADMM-CSNet: a deep learning approach for image compressive sensing [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 521-538. 10.1109/tpami.2018.2883941 |
| 15 | ADLER J, ÖKTEM O. Learned primal-dual reconstruction [J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1322-1332. 10.1109/tmi.2018.2799231 |
| 16 | YOU D, XIE J, ZHANG J. ISTA-NET++: flexible deep unfolding network for compressive sensing [C]// Proceedings of the 2021 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2021: 1-6. 10.1109/icme51207.2021.9428249 |
| 17 | RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [J]. Physica D: Nonlinear Phenomena, 1992, 60(1-4): 259-268. 10.1016/0167-2789(92)90242-f |
| 18 | TIAN C, ZHENG M, ZUO W, et al. Multi-stage image denoising with the wavelet transform [J]. Pattern Recognition, 2023, 134: 109050. 10.1016/j.patcog.2022.109050 |
| 19 | LI J, ZHU Q, WU Y, et al. Image reconstruction based on deep iterative shrinkage network [C]// Proceedings of the 2021 6th International Conference on Image, Vision and Computing. Piscataway: IEEE, 2021: 259-263. 10.1109/icivc52351.2021.9526952 |
| 20 | 王心,朱浩华,刘光灿.卷积鲁棒主成分分析[J].计算机应用,2021,41(5):1314-1318. |
| WANG X, ZHU H H, LIU G C. Convolution robust principal component analysis [J]. Journal of Computer Applications, 2021, 41(5): 1314-1318. | |
| 21 | CHAMBOLLE A, POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging [J]. Journal of Mathematical Imaging and Vision, 2011, 40: 120-145. 10.1007/s10851-010-0251-1 |
| 22 | PELT D M, BATENBURG K J. Improving filtered backprojection reconstruction by data-dependent filtering [J]. IEEE Transactions on Image Processing, 2014, 23(11): 4750-4762. 10.1109/tip.2014.2341971 |
| 23 | 席雅睿,乔志伟,温静,等.基于Chambolle-Pock算法框架的高阶TV图像重建算法[J].计算机应用,2020,40(6):1793-1798. |
| XI Y R, QIAO Z W, WEN J, et al. High order TV image reconstruction algorithm based on Chambolle-Pock algorithm framework [J]. Journal of Computer Applications, 2020, 40(6): 1793-1798. | |
| 24 | MEINHARDT T, MOELLER M, HAZIRBAS C, et al. Learning proximal operators: using denoising networks for regularizing inverse imaging problems [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1781-1790. 10.1109/iccv.2017.198 |
| 25 | HORÉ A, ZIOU D. Image quality metrics: PSNR vs. SSIM [C]// Proceedings of the 2010 20th International Conference on Pattern Recognition. Piscataway: IEEE, 2010: 2366-2369. 10.1109/icpr.2010.579 |
| 26 | SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444. 10.1109/tip.2005.859378 |
| 27 | American Association of Physicists in Medicine. Low dose CT grand challenge [DS/OL]. [2021-04-20]. . 10.1118/1.4957556 |
| [1] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
| [2] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. |
| [3] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
| [4] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
| [5] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
| [6] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
| [7] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
| [8] | Wenshuo GAO, Xiaoyun CHEN. Point cloud classification network based on node structure [J]. Journal of Computer Applications, 2024, 44(5): 1471-1478. |
| [9] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
| [10] | Jie WANG, Hua MENG. Image classification algorithm based on overall topological structure of point cloud [J]. Journal of Computer Applications, 2024, 44(4): 1107-1113. |
| [11] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
| [12] | Lijun XU, Hui LI, Zuyang LIU, Kansong CHEN, Weixuan MA. 3D-GA-Unet: MRI image segmentation algorithm for glioma based on 3D-Ghost CNN [J]. Journal of Computer Applications, 2024, 44(4): 1294-1302. |
| [13] | Yaoyao TANG, Yechen ZHU, Yangchuan LIU, Xin GAO. Research status and prospect of CT image ring artifact removal methods [J]. Journal of Computer Applications, 2024, 44(3): 890-900. |
| [14] | Jingxian ZHOU, Xina LI. UAV detection and recognition based on improved convolutional neural network and radio frequency fingerprint [J]. Journal of Computer Applications, 2024, 44(3): 876-882. |
| [15] | Yi ZHENG, Cunyi LIAO, Tianqian ZHANG, Ji WANG, Shouyin LIU. Image denoising-based cell-level RSRP estimation method for urban areas [J]. Journal of Computer Applications, 2024, 44(3): 855-862. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||