Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (12): 3755-3763.DOI: 10.11772/j.issn.1001-9081.2023010094
• Data science and technology • Previous Articles Next Articles
Wenquan LI(), Yimin MAO, Xindong PENG
Received:
2023-02-07
Revised:
2023-05-05
Accepted:
2023-05-08
Online:
2023-06-06
Published:
2023-12-10
Contact:
Wenquan LI
About author:
MAO Yimin, born in 1970, Ph. D., professor. Her research interests include data mining, big data security.Supported by:
通讯作者:
李文全
作者简介:
李文全(1980—),男,江西龙南人,副教授,硕士,主要研究方向:数据挖掘、模糊数学;Email:78192128@qq.com基金资助:
CLC Number:
Wenquan LI, Yimin MAO, Xindong PENG. Agglomerative hierarchical clustering algorithm based on hesitant fuzzy set[J]. Journal of Computer Applications, 2023, 43(12): 3755-3763.
李文全, 毛伊敏, 彭新东. 基于犹豫模糊集的凝聚式层次聚类算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3755-3763.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023010094
对象集 | |||
---|---|---|---|
{0.2,0.3} | {0.3,0.4,0.5} | {0.5} | |
{0.7,0.8,0.9} | {0.5,0.8} | {0.6,0.7,0.8} | |
{0.4,0.5} | {0.4,0.5,0.6} | {0.5,0.6,0.7} | |
{0.3,0.4,0.5} | {0.5,0.8} | {0.2,0.5} | |
{0.7} | {0.7,0.8} | {0.7,0.8,0.9} | |
{0.4,0.5} | {0.3,0.6} | {0.3,0.4} | |
{0.8} | {0.7,0.9} | {0.7,0.8} |
Tab.1 Hesitant fuzzy object sets
对象集 | |||
---|---|---|---|
{0.2,0.3} | {0.3,0.4,0.5} | {0.5} | |
{0.7,0.8,0.9} | {0.5,0.8} | {0.6,0.7,0.8} | |
{0.4,0.5} | {0.4,0.5,0.6} | {0.5,0.6,0.7} | |
{0.3,0.4,0.5} | {0.5,0.8} | {0.2,0.5} | |
{0.7} | {0.7,0.8} | {0.7,0.8,0.9} | |
{0.4,0.5} | {0.3,0.6} | {0.3,0.4} | |
{0.8} | {0.7,0.9} | {0.7,0.8} |
对象集 | |||
---|---|---|---|
{0.20,0.25,0.30} | {0.30,0.40,0.50} | {0.50,0.50,0.50} | |
{0.70,0.80,0.90} | {0.50,0.65,0.80} | {0.60,0.70,0.80} | |
{0.40,0.45,0.50} | {0.40,0.50,0.60} | {0.50,0.60,0.70} | |
{0.30,0.40,0.50} | {0.50,0.65,0.80} | {0.20,0.35,0.50} | |
{0.70,0.70,0.70} | {0.70,0.75,0.80} | {0.70,0.80,0.90} | |
{0.40,0.45,0.50} | {0.30,0.45,0.60} | {0.30,0.35,0.40} | |
{0.80,0.80,0.80} | {0.70,0.80,0.90} | {0.70,0.75,0.80} |
Tab.2 Expanded hesitant fuzzy object sets
对象集 | |||
---|---|---|---|
{0.20,0.25,0.30} | {0.30,0.40,0.50} | {0.50,0.50,0.50} | |
{0.70,0.80,0.90} | {0.50,0.65,0.80} | {0.60,0.70,0.80} | |
{0.40,0.45,0.50} | {0.40,0.50,0.60} | {0.50,0.60,0.70} | |
{0.30,0.40,0.50} | {0.50,0.65,0.80} | {0.20,0.35,0.50} | |
{0.70,0.70,0.70} | {0.70,0.75,0.80} | {0.70,0.80,0.90} | |
{0.40,0.45,0.50} | {0.30,0.45,0.60} | {0.30,0.35,0.40} | |
{0.80,0.80,0.80} | {0.70,0.80,0.90} | {0.70,0.75,0.80} |
权重 | |||
---|---|---|---|
原始权重 | 0.412 12 | 0.267 31 | 0.320 57 |
扩充后权重 | 0.383 02 | 0.277 68 | 0.339 30 |
综合权重 | 0.397 48 | 0.272 56 | 0.329 95 |
Tab.3 Attribute weights calculated by different methods
权重 | |||
---|---|---|---|
原始权重 | 0.412 12 | 0.267 31 | 0.320 57 |
扩充后权重 | 0.383 02 | 0.277 68 | 0.339 30 |
综合权重 | 0.397 48 | 0.272 56 | 0.329 95 |
簇 | |||||||
---|---|---|---|---|---|---|---|
0.000 00 | 0.392 16 | 0.155 32 | 0.198 67 | 0.383 26 | 0.158 14 | 0.430 91 | |
0.000 00 | 0.243 39 | 0.323 37 | 0.120 28 | 0.318 16 | 0.103 01 | ||
0.000 00 | 0.171 51 | 0.237 05 | 0.149 36 | 0.286 11 | |||
0.000 00 | 0.332 16 | 0.121 48 | 0.357 53 | ||||
0.000 00 | 0.345 28 | 0.080 53 | |||||
0.000 00 | 0.368 77 | ||||||
0.000 00 |
Tab.4 Distance among hesitation fuzzy objects
簇 | |||||||
---|---|---|---|---|---|---|---|
0.000 00 | 0.392 16 | 0.155 32 | 0.198 67 | 0.383 26 | 0.158 14 | 0.430 91 | |
0.000 00 | 0.243 39 | 0.323 37 | 0.120 28 | 0.318 16 | 0.103 01 | ||
0.000 00 | 0.171 51 | 0.237 05 | 0.149 36 | 0.286 11 | |||
0.000 00 | 0.332 16 | 0.121 48 | 0.357 53 | ||||
0.000 00 | 0.345 28 | 0.080 53 | |||||
0.000 00 | 0.368 77 | ||||||
0.000 00 |
簇数 | AHCHF | HFHC | FHCA |
---|---|---|---|
7 | |||
6 | |||
5 | |||
4 | |||
3 | |||
2 | |||
1 |
Tab.5 Comparison of clustering results by different algorithms
簇数 | AHCHF | HFHC | FHCA |
---|---|---|---|
7 | |||
6 | |||
5 | |||
4 | |||
3 | |||
2 | |||
1 |
算法 | SC均值 | 算法 | SC均值 |
---|---|---|---|
AHCHF | 0.710 75 | FHCA | 0.650 38 |
HFHC | 0.573 23 |
Tab.6 Mean silhouette coefficients of different algorithms
算法 | SC均值 | 算法 | SC均值 |
---|---|---|---|
AHCHF | 0.710 75 | FHCA | 0.650 38 |
HFHC | 0.573 23 |
簇数 | 平均值扩充 | 乐观扩充 | 悲观扩充 |
---|---|---|---|
7 | |||
6 | |||
5 | |||
4 | |||
3 | |||
2 | |||
1 |
Tab.7 Comparison of clustering results by proposed algorithm under different expansion methods
簇数 | 平均值扩充 | 乐观扩充 | 悲观扩充 |
---|---|---|---|
7 | |||
6 | |||
5 | |||
4 | |||
3 | |||
2 | |||
1 |
扩充方法 | SC均值 | 扩充方法 | SC均值 |
---|---|---|---|
平均值扩充 | 0.710 75 | 悲观扩充 | 0.707 47 |
乐观扩充 | 0.700 85 |
Tab.8 Mean silhouette coefficients of proposed algorithm under different expansion methods
扩充方法 | SC均值 | 扩充方法 | SC均值 |
---|---|---|---|
平均值扩充 | 0.710 75 | 悲观扩充 | 0.707 47 |
乐观扩充 | 0.700 85 |
算法 | 算法 | ||
---|---|---|---|
AHCHF | 0.188 92 | FHCA | 0.202 34 |
HFHC | 0.291 66 |
Tab.9 Comparison of center distance of different algorithms
算法 | 算法 | ||
---|---|---|---|
AHCHF | 0.188 92 | FHCA | 0.202 34 |
HFHC | 0.291 66 |
簇数 | 综合权重 (0.397 48,0.272 56,0.329 95) | 主观权重1 (0.333 33,0.333 33,0.333 33) | 主观权重2 (0.6,0.2,0.2) | 主观权重3 (0.1,0.45,0.45) |
---|---|---|---|---|
7 | ||||
6 | ||||
5 | ||||
4 | ||||
3 | ||||
2 | ||||
1 |
Tab.10 Comparison of clustering results under different weights
簇数 | 综合权重 (0.397 48,0.272 56,0.329 95) | 主观权重1 (0.333 33,0.333 33,0.333 33) | 主观权重2 (0.6,0.2,0.2) | 主观权重3 (0.1,0.45,0.45) |
---|---|---|---|---|
7 | ||||
6 | ||||
5 | ||||
4 | ||||
3 | ||||
2 | ||||
1 |
权重 | SC均值 | 权重 | SC均值 |
---|---|---|---|
综合权重 | 0.710 75 | 主观权重2 | 0.712 35 |
主观权重1 | 0.703 85 | 主观权重3 | 0.677 48 |
Tab.11 Mean silhouette coefficients under different weights
权重 | SC均值 | 权重 | SC均值 |
---|---|---|---|
综合权重 | 0.710 75 | 主观权重2 | 0.712 35 |
主观权重1 | 0.703 85 | 主观权重3 | 0.677 48 |
样本数 | 不同算法的聚类时间/ms | ||
---|---|---|---|
AHCHF | HFHC | FHCA | |
10 | 8.687 | 11.143 | 9.065 |
20 | 17.401 | 22.810 | 18.416 |
30 | 26.486 | 35.456 | 28.230 |
40 | 34.935 | 50.096 | 37.821 |
50 | 45.242 | 69.168 | 49.443 |
Tab.12 Comparison of clustering time among different algorithms
样本数 | 不同算法的聚类时间/ms | ||
---|---|---|---|
AHCHF | HFHC | FHCA | |
10 | 8.687 | 11.143 | 9.065 |
20 | 17.401 | 22.810 | 18.416 |
30 | 26.486 | 35.456 | 28.230 |
40 | 34.935 | 50.096 | 37.821 |
50 | 45.242 | 69.168 | 49.443 |
算法 | 不同情況下空间复杂度 | |
---|---|---|
最好情况 | 最坏情况 | |
HFHC | ||
FHCA | ||
AHCHF |
Tab.13 Comparison of spatial complexity among different algorithms
算法 | 不同情況下空间复杂度 | |
---|---|---|
最好情况 | 最坏情况 | |
HFHC | ||
FHCA | ||
AHCHF |
1 | 徐晓,丁世飞,丁玲.密度峰值聚类算法研究进展[J].软件学报, 2022,33(5):1800-1816. |
XU X, DING S F, DING L. Survey on density peaks clustering Algorithm [J]. Journal of Software, 2022, 33(5): 1800-1816. | |
2 | BALAKUMAR J, VIJAYARANI S. Text document clustering using artificial bee colony with bisecting K-means algorithm[J].International Journal of Advanced Research in Computer Science,2018,9(1): 619-623. 10.26483/ijarcs.v9i1.5359 |
3 | KARYPIS G, HAN E-H, KUMA R V. Chameleon: hierarchical clustering using dynamic modeling[J]. Computer, 1999, 32(8): 68-75. 10.1109/2.781637 |
4 | SEGUNDO P S, RODRIGUEZ-LOSADA D. Robust global feature based data association with a sparse bit optimized maximum clique algorithm[J]. IEEE Transaction on Robotics, 2013, 29(5): 1332-1339. 10.1109/tro.2013.2264869 |
5 | ESTER M, KRIEGEL H P, SANDER, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proceeding of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996: 226-231. |
6 | ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353. 10.1016/s0019-9958(65)90241-x |
7 | ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96. 10.1016/s0165-0114(86)80034-3 |
8 | ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning-Ⅱ [J]. Information Sciences, 1975, 8(4): 301-357. 10.1016/0020-0255(75)90046-8 |
9 | MENDEL J M. Uncertain Rule-based Fuzzy Logic System: Introduction and New Directions[M]. Upper Saddle River: Prentice-Hall, 2001: 56-57. |
10 | DuBOIS D, PRADE H. Fuzzy Sets and Systems: Theory and Applications [M]. Orlando: Academic Press, 1980: 35-37. 10.1016/0165-0114(80)90004-4 |
11 | DUNN J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters [J]. Journal of Cybernetics, 1973, 3(3): 32-57. 10.1080/01969727308546046 |
12 | 贺正洪,雷英杰.直觉模糊C-均值聚类算法研究[J].控制与决策,2011,26(6):847-850,856. |
HE Z H, LEI Y J. Research on intuitionistic fuzzy C-means clustering algorithm[J]. Control and Decision, 2011, 26(6): 847-850,856. | |
13 | XIANG T, GONG S. Spectral clustering with eigenvector selection[J]. Pattern Recognition, 2008, 41(3): 1012-1029. 10.1016/j.patcog.2007.07.023 |
14 | 刘怡俊,龙锦涛,杨晓君.基于多层二部图的高光谱模糊聚类算法[J].计算机应用研究,2023,40(4):1246-1249. |
LIU Y J, LONG J T, YANG X J. Fuzzy clustering based on hierarchical bipartite graph for large scale hyperspectral image[J]. Application Research of Computers, 2022, 40(4): 1246-1249. | |
15 | 耿新青,王正欧.基于增量式模糊聚类算法的文本挖掘[J].南京理工大学学报(自然科学版),2022,46(5):579-585,593. |
GENG X Q, WANG Z O. Text mining based on incremental fuzzy clustering algorithm[J]. Journal of Nanjing University of Science and Technology, 2022, 46(5): 579-585, 593. | |
16 | 徐晓,丁世飞,孙统风,等.基于网格筛选的大规模密度峰值聚类算法[J].计算机研究与发展,2018,55(11):2419-2429. 10.7544/issn1000-1239.2018.20170227 |
XU X, DING S F, SUN T F, et al. Large-scale density peaks clustering algorithm based on grid screening[J]. Journal of Computer Research and Development, 2018, 55(11): 2419-2429. 10.7544/issn1000-1239.2018.20170227 | |
17 | TORRA V. Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010, 25(6): 529-539. |
18 | XU Z, XIA M. Distance and similarity measures for hesitant fuzzy sets [J]. Information Sciences, 2011, 18(11): 2128-2138. 10.1016/j.ins.2011.01.028 |
19 | CHEN N, XU Z S, XIA M M. Hierarchical hesitant fuzzy K-means clustering algorithm[J]. Applied Mathematics, 2014, 29: 1-17. 10.1007/s11766-014-3091-8 |
20 | ZHANG X L, XU Z S. Hesitant fuzzy agglomerative hierarchical clustering algorithms[J]. International Journal of Systems Science, 2013, 46(3): 562-576. |
21 | 王志飞,陆亿红.凝聚中心犹豫度恒定的模糊层次聚类算法[J].小型微型计算机系统,2021,42(1):20-26. 10.3969/j.issn.1000-1220.2021.01.005 |
WANG Z F, LU Y H. Fuzzy hierarchical clustering algorithm with constant hesitation of agglomeration center[J]. Journal of Chinese Computer Systems, 2021, 42(1): 20-26. 10.3969/j.issn.1000-1220.2021.01.005 | |
22 | 张煜,陆亿红,黄德才.基于密度峰值的加权犹豫模糊聚类算法[J].计算机科学,2021,48(1):145-151. 10.11896/jsjkx.200400043 |
ZHANG Y, LU Y H, HUANG D C. Weighted hesitant fuzzy clustering based on density peaks[J]. Computer Science, 2021, 48(1): 145-151. 10.11896/jsjkx.200400043 | |
23 | 孙爽爽,黄德才,陆亿红.犹豫模糊数据对象集的谱聚类算法[J].小型微型计算机系统,2023,44(2):225-231. |
SUN S S, HUANG D C, LU Y H. Spectral clustering algorithm for hesitating fuzzy data object set[J]. Journal of Chinese Computer Systems, 2023, 44(2): 225-231. | |
24 | 邓小燕.犹豫模糊核C-均值聚类用于数据库系统选择[J].控制工程,2020,27(1):182-187. |
DENG X Y. Hesitant fuzzy kernel C-means clustering for database system selection[J]. Control Engineering of China, 2020, 27(1): 182-187. | |
25 | 闫菲菲,魏翠萍,任智亮.犹豫模糊集的熵[J].数学的实践与认识, 2018,48(14):243-250. |
YAN F F, WEI C P, REN Z L. Entropy measure for hesitant fuzzy sets[J]. Mathematics in Practice and Theory, 2018, 48(14): 243-250. | |
26 | XU Z, ZHANG X. Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information[J]. Knowledge-Based Systems, 2013, 52: 53-64. 10.1016/j.knosys.2013.05.011 |
[1] | Haodong ZHENG, Hua MA, Yingchao XIE, Wensheng TANG. Knowledge tracing model based on graph neural network blending with forgetting factors and memory gate [J]. Journal of Computer Applications, 2023, 43(9): 2747-2752. |
[2] | Hua JIANG, Xing LI, Huijiao WANG, Jinghai WEI. Cross-level high utility itemsets mining algorithm based on data index structure [J]. Journal of Computer Applications, 2023, 43(7): 2200-2208. |
[3] | Shuo HUANG, Yanhui LI, Jianqiu CAO. PrivSPM: frequent sequential pattern mining algorithm under local differential privacy [J]. Journal of Computer Applications, 2023, 43(7): 2057-2064. |
[4] | Chaoshuai QI, Wensi HE, Yi JIAO, Yinghong MA, Wei CAI, Suping REN. Survey on anomaly detection algorithms for unmanned aerial vehicle flight data [J]. Journal of Computer Applications, 2023, 43(6): 1833-1841. |
[5] | Yuanjiang LI, Jinsheng QUAN, Yangyi TAN, Tian YANG. Attribute reduction for high-dimensional data based on bi-view of similarity and difference [J]. Journal of Computer Applications, 2023, 43(5): 1467-1472. |
[6] | Xiaomeng SHAO, Meng ZHANG. Temporal convolutional knowledge tracing model with attention mechanism [J]. Journal of Computer Applications, 2023, 43(2): 343-348. |
[7] | Jun WU, Aijia OUYANG, Lin ZHANG. Statistically significant sequential patterns mining algorithm under influence degree [J]. Journal of Computer Applications, 2022, 42(9): 2713-2721. |
[8] | Youzhi LI, Zhihua HU, Chun CHEN, Peibei YANG, Yajing DONG. Prediction model of transaction pricing in internet freight transport platform based on combination of dual long short-term memory networks [J]. Journal of Computer Applications, 2022, 42(5): 1616-1623. |
[9] | Yudan CHEN, Cuifang GAO, Wanqiang SHEN, Ping YIN. Iterative intuitionistic fuzzy K-modes algorithm [J]. Journal of Computer Applications, 2022, 42(2): 375-381. |
[10] | Shunkun YU, Hongxu YAN. Heuristic attribute value reduction model based on certainty factor [J]. Journal of Computer Applications, 2022, 42(2): 469-474. |
[11] | DAI Yanran, DAI Guoqing, YUAN Yubo. Multi-face foreground extraction method based on skin color learning [J]. Journal of Computer Applications, 2021, 41(6): 1659-1666. |
[12] | LIU Shize, QIN Yanjun, WANG Chenxing, SU Lin, KE Qixue, LUO Haiyong, SUN Yi, WANG Baohui. Traffic flow prediction algorithm based on deep residual long short-term memory network [J]. Journal of Computer Applications, 2021, 41(6): 1566-1572. |
[13] | LI Xujuan, PI Jianyong, HUANG Feixiang, JIA Haipeng. Self-generated deep neural network based 4D trajectory prediction [J]. Journal of Computer Applications, 2021, 41(5): 1492-1499. |
[14] | GUO Jia, HAN Litao, SUN Xianlong, ZHOU Lijuan. Comparative density peaks clustering algorithm with automatic determination of clustering center [J]. Journal of Computer Applications, 2021, 41(3): 738-744. |
[15] | Gang CHEN, Xiangru MENG, Qiaoyan KANG, Yong YANG. Virtual software defined network mapping algorithm based on topology segmentation and clustering analysis [J]. Journal of Computer Applications, 2021, 41(11): 3309-3318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||